def main(args): """Main function of RL-LIM for synthetic data experiments. Args: args: data_name, train_no, probe_no, test_no, seed, hyperparameters, network parameters """ # Problem specification problem = args.problem # The ratio between training and probe datasets train_rate = args.train_rate probe_rate = args.probe_rate dict_rate = {'train': train_rate, 'probe': probe_rate} # Random seed seed = args.seed # Network parameters parameters = dict() parameters['hidden_dim'] = args.hidden_dim parameters['iterations'] = args.iterations parameters['num_layers'] = args.num_layers parameters['batch_size'] = args.batch_size parameters['batch_size_inner'] = args.batch_size_inner parameters['lambda'] = args.hyper_lambda # Checkpoint file name checkpoint_file_name = args.checkpoint_file_name # Number of sample explanations n_exp = args.n_exp # Loads data data_loading.load_facebook_data(dict_rate, seed) print('Finished data loading.') # Preprocesses data # Normalization methods: either 'minmax' or 'standard' normalization = args.normalization # Extracts features and labels & normalizes features x_train, y_train, x_probe, _, x_test, y_test, col_names = \ data_loading.preprocess_data(normalization, 'train.csv', 'probe.csv', 'test.csv') print('Finished data preprocess.') # Trains black-box model # Initializes black-box model if problem == 'regression': bb_model = lightgbm.LGBMRegressor() elif problem == 'classification': bb_model = lightgbm.LGBMClassifier() # Trains black-box model bb_model = bb_model.fit(x_train, y_train) print('Finished black-box model training.') # Constructs auxiliary datasets if problem == 'regression': y_train_hat = bb_model.predict(x_train) y_probe_hat = bb_model.predict(x_probe) elif problem == 'classification': y_train_hat = bb_model.predict_proba(x_train)[:, 1] y_probe_hat = bb_model.predict_proba(x_probe)[:, 1] print('Finished auxiliary dataset construction.') # Trains interpretable baseline # Defines baseline baseline = linear_model.Ridge(alpha=1) # Trains baseline model baseline.fit(x_train, y_train_hat) print('Finished interpretable baseline training.') # Trains instance-wise weight estimator # Defines locally interpretable model interp_model = linear_model.Ridge(alpha=1) # Initializes RL-LIM rllim_class = rllim.Rllim(x_train, y_train_hat, x_probe, y_probe_hat, parameters, interp_model, baseline, checkpoint_file_name) # Trains RL-LIM rllim_class.rllim_train() print('Finished instance-wise weight estimator training.') # Interpretable inference # Trains locally interpretable models and output # instance-wise explanations (test_coef) and # interpretable predictions (test_y_fit) test_y_fit, test_coef = rllim_class.rllim_interpreter( x_train, y_train_hat, x_test, interp_model) print('Finished instance-wise predictions and local explanations.') # Overall performance mae = rllim_metrics.overall_performance_metrics(y_test, test_y_fit, metric='mae') print('Overall performance of RL-LIM in terms of MAE: ' + str(np.round(mae, 4))) # Black-box model predictions y_test_hat = bb_model.predict(x_test) # Fidelity in terms of MAE mae = rllim_metrics.fidelity_metrics(y_test_hat, test_y_fit, metric='mae') print('Fidelity of RL-LIM in terms of MAE: ' + str(np.round(mae, 4))) # Fidelity in terms of R2 Score r2 = rllim_metrics.fidelity_metrics(y_test_hat, test_y_fit, metric='r2') print('Fidelity of RL-LIM in terms of R2 Score: ' + str(np.round(r2, 4))) # Instance-wise explanations # Local explanations of n_exp samples local_explanations = test_coef[:n_exp, :] final_col_names = np.concatenate((np.asarray(['intercept']), col_names), axis=0) pd.DataFrame(data=local_explanations, index=range(n_exp), columns=final_col_names)
def main(args): """Main function of RL-LIM for synthetic data experiments. Args: args: data_name, train_no, probe_no, test_no, seed, hyperparameters, network parameters """ # Inputs data_name = args.data_name # The number of training, probe and testing samples train_no = args.train_no probe_no = args.probe_no test_no = args.test_no dim_no = args.dim_no dict_no = { 'train': train_no, 'probe': probe_no, 'test': test_no, 'dim': dim_no } # Random seed seed = args.seed # Network parameters parameters = dict() parameters['hidden_dim'] = args.hidden_dim parameters['iterations'] = args.iterations parameters['num_layers'] = args.num_layers parameters['batch_size'] = args.batch_size parameters['batch_size_inner'] = args.batch_size_inner parameters['lambda'] = args.hyper_lambda # Checkpoint file name checkpoint_file_name = args.checkpoint_file_name # Loads data x_train, y_train, x_probe, y_probe, x_test, y_test, c_test = \ data_loading.load_synthetic_data(data_name, dict_no, seed) print('Finish ' + str(data_name) + ' data loading') # Trains interpretable baseline # Defins baseline baseline = linear_model.Ridge(alpha=1) # Trains interpretable baseline model baseline.fit(x_train, y_train) print('Finished interpretable baseline training.') # Trains instance-wise weight estimator # Defines locally interpretable model interp_model = linear_model.Ridge(alpha=1) # Initializes RL-LIM rllim_class = rllim.Rllim(x_train, y_train, x_probe, y_probe, parameters, interp_model, baseline, checkpoint_file_name) # Trains RL-LIM rllim_class.rllim_train() print('Finished instance-wise weight estimator training.') # Interpretable inference # Trains locally interpretable models and output # instance-wise explanations (test_coef) # and interpretable predictions (test_y_fit) test_y_fit, test_coef = \ rllim_class.rllim_interpreter(x_train, y_train, x_test, interp_model) print('Finished interpretable predictions and local explanations.') # Fidelity mae = rllim_metrics.fidelity_metrics(y_test, test_y_fit, metric='mae') print('fidelity of RL-LIM in terms of MAE: ' + str(np.round(mae, 4))) # Absolute Weight Differences (AWD) between ground truth local dynamics and # estimated local dynamics by RL-LIM awd = rllim_metrics.awd_metric(c_test, test_coef) print('AWD of RL-LIM: ' + str(np.round(awd, 4))) # Fidelity plot rllim_metrics.plot_result(x_test, data_name, y_test, test_y_fit, c_test, test_coef, metric='mae', criteria='Fidelity') # AWD plot rllim_metrics.plot_result(x_test, data_name, y_test, test_y_fit, c_test, test_coef, metric='mae', criteria='AWD')