Exemple #1
0
def main():
    args = parser.parse_args()

    env = GridWorld(display=args.render,
                    obstacles=[np.asarray([1, 2])],
                    step_wrapper=utils.step_wrapper,
                    reset_wrapper=utils.reset_wrapper,
                    stepReward=.01)

    model = ActorCritic(env,
                        gamma=0.99,
                        log_interval=100,
                        max_episodes=10**4,
                        max_ep_length=30)

    if args.policy_path is not None:
        model.policy.load(args.policy_path)

    if not args.play:
        model.train()

        if not args.dont_save:
            model.policy.save('./saved-models/')

    if args.play:
        env.tickSpeed = 15
        assert args.policy_path is not None, 'pass a policy to play from!'

        model.generate_trajectory(args.num_trajs, './trajs/ac_gridworld/')
Exemple #2
0
def main():
    fe = DummyFeatureExtractor()
    env = EwapGridworld(
        ped_id=1,
        vision_radius=4,
    )
    rl = ActorCritic(env, feat_extractor=fe, max_episodes=10**4)

    rl.train()
Exemple #3
0
def main():
    """Runs experiment"""

    args = parser.parse_args()

    utils.seed_all(args.seed)

    ts = time.time()
    st = datetime.datetime.fromtimestamp(ts).strftime("%Y-%m-%d_%H:%M:%S")

    to_save = pathlib.Path(args.save_dir)
    dir_name = args.save_folder + "_" + st
    to_save = to_save / dir_name
    to_save = str(to_save.resolve())

    log_file = "Experiment_info.txt"

    experiment_logger = Logger(to_save, log_file)
    experiment_logger.log_header("Arguments for the experiment :")
    experiment_logger.log_info(vars(args))

    feat_ext = fe_utils.load_feature_extractor(args.feat_extractor, obs_width=args.pedestrian_width, agent_width=args.pedestrian_width)

    experiment_logger.log_header("Parameters of the feature extractor :")
    experiment_logger.log_info(feat_ext.__dict__)

    env = GridWorld(
        display=args.render,
        is_random=False,
        rows=576,
        cols=720,
        agent_width=args.pedestrian_width,
        step_size=2,
        obs_width=args.pedestrian_width,
        width=10,
        subject=args.subject,
        annotation_file=args.annotation_file,
        goal_state=None,
        step_wrapper=utils.step_wrapper,
        seed=args.seed,
        replace_subject=args.replace_subject,
        segment_size=args.segment_size,
        external_control=True,
        continuous_action=False,
        reset_wrapper=utils.reset_wrapper,
        consider_heading=True,
        is_onehot=False,
        show_orientation=True,
        show_comparison=True,
        show_trail=True,
    )

    experiment_logger.log_header("Environment details :")
    experiment_logger.log_info(env.__dict__)

    if args.rl_method == "ActorCritic":
        rl_method = ActorCritic(
            env,
            feat_extractor=feat_ext,
            gamma=1,
            log_interval=args.rl_log_intervals,
            max_episode_length=args.rl_ep_length,
            hidden_dims=args.policy_net_hidden_dims,
            save_folder=to_save,
            lr=args.lr_rl,
            max_episodes=args.rl_episodes,
        )

    if args.rl_method == "SAC":
        if not env.continuous_action:
            print("The action space needs to be continuous for SAC to work.")
            exit()

        replay_buffer = ReplayBuffer(args.replay_buffer_size)

        rl_method = SoftActorCritic(
            env,
            replay_buffer,
            feat_ext,
            play_interval=500,
            learning_rate=args.lr_rl,
            buffer_sample_size=args.replay_buffer_sample_size,
        )

    if args.rl_method == "discrete_QSAC":
        if not isinstance(env.action_space, gym.spaces.Discrete):
            print("discrete SAC requires a discrete action space to work.")
            exit()

        replay_buffer = ReplayBuffer(args.replay_buffer_size)

        rl_method = QSAC(
            env,
            replay_buffer,
            feat_ext,
            args.replay_buffer_sample_size,
            learning_rate=args.lr_rl,
            entropy_tuning=True,
            entropy_target=args.entropy_target,
            play_interval=args.play_interval,
            tau=args.tau,
            gamma=args.gamma,
        )

    if args.rl_method == "discrete_SAC":
        if not isinstance(env.action_space, gym.spaces.Discrete):
            print("discrete SAC requires a discrete action space to work.")
            exit()

        replay_buffer = ReplayBuffer(args.replay_buffer_size)

        rl_method = DiscreteSAC(
            env,
            replay_buffer,
            feat_ext,
            args.replay_buffer_sample_size,
            learning_rate=args.lr_rl,
            entropy_tuning=True,
            entropy_target=args.entropy_target,
            play_interval=args.play_interval,
            tau=args.tau,
            gamma=args.gamma,
        )

    print("RL method initialized.")
    print(rl_method.policy)
    if args.policy_path is not None:
        rl_method.policy.load(args.policy_path)

    experiment_logger.log_header("Details of the RL method :")
    experiment_logger.log_info(rl_method.__dict__)

    expert_trajectories = read_expert_trajectories(args.exp_trajectory_path)

    irl_method = PerTrajGCL(
        rl=rl_method,
        env=env,
        expert_trajectories=expert_trajectories,
        learning_rate=args.lr_irl,
        l2_regularization=args.regularizer,
        save_folder=to_save,
        saving_interval=args.saving_interval,
    )

    print("IRL method intialized.")
    print(irl_method.reward_net)

    experiment_logger.log_header("Details of the IRL method :")
    experiment_logger.log_info(irl_method.__dict__)

    irl_method.pre_train(
        args.pre_train_iterations,
        args.num_expert_samples,
        account_for_terminal_state=args.account_for_terminal_state,
        gamma=args.gamma,
    )

    rl_method.train(
        args.pre_train_rl_iterations,
        args.rl_ep_length,
        reward_network=irl_method.reward_net,
    )

    # save intermediate RL result
    rl_method.policy.save(to_save + "/policy")

    irl_method.train(
        args.irl_iterations,
        args.rl_episodes,
        args.rl_ep_length,
        args.rl_ep_length,
        reset_training=args.reset_training,
        account_for_terminal_state=args.account_for_terminal_state,
        gamma=args.gamma,
        stochastic_sampling=args.stochastic_sampling,
        num_expert_samples=args.num_expert_samples,
        num_policy_samples=args.num_policy_samples,
    )

    metric_applicator = metric_utils.LTHMP2020()
    metric_results = metric_utils.collect_trajectories_and_metrics(
        env,
        feat_ext,
        rl_method.policy,
        len(expert_trajectories),
        args.rl_ep_length,
        metric_applicator,
        disregard_collisions=True,
    )

    pd_metrics = pd.DataFrame(metric_results).T
    pd_metrics = pd_metrics.applymap(lambda x: x[0])
    pd_metrics.to_pickle(to_save + "/metrics.pkl")

    with open(to_save + "/rl_data.csv", "a") as f:
        rl_method.data_table.write_csv(f)

    with open(to_save + "/irl_data.csv", "a") as f:
        irl_method.data_table.write_csv(f)

    with open(to_save + "/pre_irl_data.csv", "a") as f:
        irl_method.pre_data_table.write_csv(f)
Exemple #4
0
def main():
    env = gym.make('CartPole-v0')

    model = ActorCritic(env, gamma=0.99, log_interval=1, max_ep_length=200)
    model.train()
Exemple #5
0
def main():

    #####for the logger
    ts = time.time()
    st = datetime.datetime.fromtimestamp(ts).strftime("%Y-%m-%d %H:%M:%S")
    ###################

    args = parser.parse_args()

    seed_all(args.seed)

    if args.on_server:

        matplotlib.use("Agg")
        # pygame without monitor
        os.environ["SDL_VIDEODRIVER"] = "dummy"

    from matplotlib import pyplot as plt

    mp.set_start_method("spawn")

    from rlmethods.b_actor_critic import ActorCritic
    from rlmethods.soft_ac import SoftActorCritic, QSoftActorCritic
    from rlmethods.rlutils import ReplayBuffer

    from envs.gridworld_drone import GridWorldDrone
    from featureExtractor.drone_feature_extractor import (
        DroneFeatureSAM1,
        DroneFeatureOccup,
        DroneFeatureRisk,
        DroneFeatureRisk_v2,
        VasquezF1,
        VasquezF2,
        VasquezF3,
        Fahad,
        GoalConditionedFahad,
    )
    from featureExtractor.gridworld_featureExtractor import (
        FrontBackSide,
        LocalGlobal,
        OneHot,
        SocialNav,
        FrontBackSideSimple,
    )
    from featureExtractor.drone_feature_extractor import (
        DroneFeatureRisk_speed,
        DroneFeatureRisk_speedv2,
    )

    from featureExtractor.drone_feature_extractor import VasquezF1

    save_folder = None

    if not args.dont_save and not args.play:

        if not args.save_folder:
            print("Provide save folder.")
            exit()

        policy_net_dims = "-policy_net-"
        for dim in args.policy_net_hidden_dims:
            policy_net_dims += str(dim)
            policy_net_dims += "-"

        reward_net_dims = "-reward_net-"
        for dim in args.reward_net_hidden_dims:
            reward_net_dims += str(dim)
            reward_net_dims += "-"

        save_folder = (
            "./results/"
            + args.save_folder
            + st
            + args.feat_extractor
            + "-seed-"
            + str(args.seed)
            + policy_net_dims
            + reward_net_dims
            + "-total-ep-"
            + str(args.total_episodes)
            + "-max-ep-len-"
            + str(args.max_ep_length)
        )

        experiment_logger = Logger(save_folder, "experiment_info.txt")
        experiment_logger.log_header("Arguments for the experiment :")
        repo = git.Repo(search_parent_directories=True)
        experiment_logger.log_info({'From branch : ' : repo.active_branch.name})
        experiment_logger.log_info({'Commit number : ' : repo.head.object.hexsha})
        experiment_logger.log_info(vars(args))

    window_size = 9
    step_size = 2
    agent_width = 10
    obs_width = 10
    grid_size = 10

    feat_ext = None
    # initialize the feature extractor to be used
    if args.feat_extractor == "Onehot":
        feat_ext = OneHot(grid_rows=10, grid_cols=10)
    if args.feat_extractor == "SocialNav":
        feat_ext = SocialNav(fieldList=["agent_state", "goal_state"])
    if args.feat_extractor == "FrontBackSideSimple":
        feat_ext = FrontBackSideSimple(
            thresh1=1,
            thresh2=2,
            thresh3=3,
            thresh4=4,
            step_size=step_size,
            agent_width=agent_width,
            obs_width=obs_width,
        )

    if args.feat_extractor == "LocalGlobal":
        feat_ext = LocalGlobal(
            window_size=11,
            grid_size=grid_size,
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
        )

    if args.feat_extractor == "DroneFeatureSAM1":

        feat_ext = DroneFeatureSAM1(
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
            grid_size=grid_size,
            thresh1=15,
            thresh2=30,
        )

    if args.feat_extractor == "DroneFeatureOccup":

        feat_ext = DroneFeatureOccup(
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
            grid_size=grid_size,
            window_size=window_size,
        )

    if args.feat_extractor == "DroneFeatureRisk":

        feat_ext = DroneFeatureRisk(
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
            grid_size=grid_size,
            show_agent_persp=False,
            thresh1=15,
            thresh2=30,
        )

    if args.feat_extractor == "DroneFeatureRisk_v2":

        feat_ext = DroneFeatureRisk_v2(
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
            grid_size=grid_size,
            show_agent_persp=False,
            thresh1=15,
            thresh2=30,
        )

    if args.feat_extractor == "DroneFeatureRisk_speed":

        feat_ext = DroneFeatureRisk_speed(
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
            grid_size=grid_size,
            show_agent_persp=False,
            return_tensor=False,
            thresh1=10,
            thresh2=15,
        )

    if args.feat_extractor == "DroneFeatureRisk_speedv2":

        feat_ext = DroneFeatureRisk_speedv2(
            agent_width=agent_width,
            obs_width=obs_width,
            step_size=step_size,
            grid_size=grid_size,
            show_agent_persp=False,
            return_tensor=False,
            thresh1=18,
            thresh2=30,
        )

    if args.feat_extractor == "VasquezF1":
        feat_ext = VasquezF1(agent_width * 6, 0.5, 1.0)

    if args.feat_extractor == "VasquezF2":
        feat_ext = VasquezF1(agent_width * 6, 0.5, 1.0)

    if args.feat_extractor == "VasquezF3":
        feat_ext = VasquezF3(agent_width)

    if args.feat_extractor == "Fahad":
        feat_ext = Fahad(36, 60, 0.5, 1.0)

    if args.feat_extractor == "GoalConditionedFahad":
        feat_ext = GoalConditionedFahad(36, 60, 0.5, 1.0)

    if feat_ext is None:
        print("Please enter proper feature extractor!")
        exit()
    # log feature extractor info

    if not args.dont_save and not args.play:

        experiment_logger.log_header("Parameters of the feature extractor :")
        experiment_logger.log_info(feat_ext.__dict__)

    # initialize the environment
    if args.replace_subject:
        replace_subject = True
    else:
        replace_subject = False

    env = GridWorldDrone(
        display=args.render,
        is_onehot=False,
        seed=args.seed,
        obstacles=None,
        show_trail=False,
        is_random=True,
        annotation_file=args.annotation_file,
        subject=args.subject,
        tick_speed=60,
        obs_width=10,
        step_size=step_size,
        agent_width=agent_width,
        replace_subject=replace_subject,
        segment_size=args.segment_size,
        external_control=True,
        step_reward=0.001,
        show_comparison=True,
        consider_heading=True,
        show_orientation=True,
        # rows=200, cols=200, width=grid_size)
        rows=576,
        cols=720,
        width=grid_size,
    )

    # env = gym.make('Acrobot-v1')
    # log environment info
    if not args.dont_save and not args.play:

        experiment_logger.log_header("Environment details :")
        experiment_logger.log_info(env.__dict__)

    # initialize RL

    if args.rl_method == "ActorCritic":
        model = ActorCritic(
            env,
            feat_extractor=feat_ext,
            gamma=1,
            log_interval=100,
            max_episode_length=args.max_ep_length,
            hidden_dims=args.policy_net_hidden_dims,
            save_folder=save_folder,
            lr=args.lr,
            entropy_coeff=args.entropy_coeff,
            max_episodes=args.total_episodes,
        )

    if args.rl_method == "SAC":

        replay_buffer = ReplayBuffer(args.replay_buffer_size)

        model = SoftActorCritic(
            env,
            replay_buffer,
            feat_ext,
            buffer_sample_size=args.replay_buffer_sample_size,
            entropy_tuning=True,
            play_interval=args.play_interval,
            entropy_target=args.entropy_target,
            gamma=args.gamma,
            learning_rate=args.lr,
        )

    if args.rl_method == "discrete_QSAC":

        replay_buffer = ReplayBuffer(args.replay_buffer_size)

        model = QSoftActorCritic(
            env,
            replay_buffer,
            feat_ext,
            buffer_sample_size=args.replay_buffer_sample_size,
            entropy_tuning=True,
            play_interval=args.play_interval,
            entropy_target=args.entropy_target,
            gamma=args.gamma,
            learning_rate=args.lr,
        )
    # log RL info
    if not args.dont_save and not args.play:

        experiment_logger.log_header("Details of the RL method :")
        experiment_logger.log_info(model.__dict__)

    if args.policy_path is not None:

        from debugtools import numericalSort

        policy_file_list = []
        reward_across_models = []
        # print(args.policy_path)
        if os.path.isfile(args.policy_path):
            policy_file_list.append(args.policy_path)
        if os.path.isdir(args.policy_path):
            policy_names = glob.glob(os.path.join(args.policy_path, "*.pt"))
            policy_file_list = sorted(policy_names, key=numericalSort)

        xaxis = np.arange(len(policy_file_list))

    if not args.play and not args.play_user:
        # no playing of any kind, so training

        if args.reward_path is None:

            if args.policy_path:
                model.policy.load(args.policy_path)

            if args.rl_method == "SAC" or args.rl_method == "discrete_QSAC":
                model.train(args.total_episodes, args.max_ep_length)

            else:
                model.train()

        else:
            from irlmethods.deep_maxent import RewardNet

            state_size = feat_ext.extract_features(env.reset()).shape[0]
            reward_net = RewardNet(state_size, args.reward_net_hidden_dims)
            reward_net.load(args.reward_path)
            print(next(reward_net.parameters()).is_cuda)
            model.train(reward_net=reward_net)

        if not args.dont_save:
            model.policy.save(save_folder + "/policy-models/")

    if args.play:
        # env.tickSpeed = 15
        from debugtools import compile_results

        xaxis = []
        counter = 1
        plt.figure(0)
        avg_reward_list = []
        frac_good_run_list = []
        print(policy_file_list)
        for policy_file in policy_file_list:

            print("Playing for policy :", policy_file)
            model.policy.load(policy_file)
            policy_folder = policy_file.strip().split("/")[0:-2]
            save_folder = ""
            for p in policy_folder:
                save_folder = save_folder + p + "/"

            print("The final save folder ", save_folder)
            # env.tickSpeed = 10
            assert args.policy_path is not None, "pass a policy to play from!"
            if args.exp_trajectory_path is not None:
                from irlmethods.irlUtils import calculate_expert_svf

                expert_svf = calculate_expert_svf(
                    args.exp_trajectory_path,
                    max_time_steps=args.max_ep_length,
                    feature_extractor=feat_ext,
                    gamma=1,
                )
            # reward_across_models.append(model.generate_trajectory(args.num_trajs, args.render))
            if args.exp_trajectory_path is None:

                if args.dont_save:
                    rewards, state_info, sub_info = model.generate_trajectory(
                        args.num_trajs, args.render
                    )
                else:
                    rewards, state_info, sub_info = model.generate_trajectory(
                        args.num_trajs,
                        args.render,
                        store_raw=args.store_raw_states,
                        path=save_folder + "/agent_generated_trajectories/",
                    )
            else:

                if args.dont_save:
                    rewards, state_info, sub_info = model.generate_trajectory(
                        args.num_trajs, args.render, expert_svf=expert_svf
                    )
                else:
                    rewards, state_info, sub_info = model.generate_trajectory(
                        args.num_trajs,
                        args.render,
                        path=save_folder + "/agent_generated_trajectories/",
                        expert_svf=expert_svf,
                    )

            avg_reward, good_run_frac = compile_results(
                rewards, state_info, sub_info
            )

            avg_reward_list.append(avg_reward)
            frac_good_run_list.append(good_run_frac)
            plt.plot(avg_reward_list, c="r")
            plt.plot(frac_good_run_list, c="g")
            plt.draw()
        plt.show()

    if args.play_user:
        env.tickSpeed = 200

        model.generate_trajectory_user(
            args.num_trajs, args.render, path="./user_generated_trajectories/"
        )