Exemple #1
0
    def __init__(self, car: Car, ball_predictions, predicate: callable = None):
        self.ball: Ball = None
        self.is_viable = True

        #find the first reachable ball slice that also meets the predicate
        test_car = Car(car)
        test_aerial = Aerial(car)
        
        for ball in ball_predictions:
            test_aerial.target = ball.position
            test_aerial.arrival_time = ball.time

            # fake our car state :D
            dir_to_target = ground_direction(test_car.position, test_aerial.target)
            test_car.velocity = dir_to_target * max(norm(test_car.velocity), 1200)
            test_car.orientation = look_at(dir_to_target, vec3(0,0,1))

            if test_aerial.is_viable() and (predicate is None or predicate(car, ball)):
                self.ball = ball
                break

        #if no slice is found, use the last one
        if self.ball is None:
            self.ball = ball_predictions[-1]
            self.is_viable = False

        self.time = self.ball.time
        self.ground_pos = ground(self.ball.position)
        self.position = self.ball.position
    def simulate(self, bot) -> vec3:
        # print('simulate intercept')

        # Init vars
        c = Car(bot.game.my_car)
        b = Ball(bot.game.ball)
        t = vec3(bot.target)
        intercept = self.location
        dt = 1.0 / 60.0
        hit = False
        min_error = None

        # Drive towards intercept (moving in direction of c.forward())
        c.rotation = look_at(intercept, c.up())
        direction = normalize(intercept - c.location)  #c.forward()
        advance_distance = norm(intercept - c.location) - c.hitbox(
        ).half_width[0] - b.collision_radius
        translation = direction * advance_distance
        sim_start_state: ThrottleFrame = BoostAnalysis().travel_distance(
            advance_distance, norm(c.velocity))
        c.velocity = direction * sim_start_state.speed
        c.location += translation
        c.time += sim_start_state.time
        bot.ball_predictions = [vec3(b.location)]

        while b.time < c.time:
            b.step(dt)
            bot.ball_predictions.append(vec3(b.location))

        # print(c.time, b.time)
        # print(c.location, b.location)

        # Simulate the collision and resulting
        for i in range(60 * 3):
            c.location += c.velocity * dt
            b.step(dt, c)

            # Check if we hit the ball yet
            if norm(b.location - c.location) < (c.hitbox().half_width[0] +
                                                b.collision_radius) * 1.05:
                hit = True
                # print('hit')

            # Measure dist from target
            error = t - b.location
            if hit and (min_error == None or norm(error) < norm(min_error)):
                min_error = error

            # Record trajectory
            bot.ball_predictions.append(vec3(b.location))

        if not hit: return None
        return min_error
Exemple #3
0
    def reset_gamestate(self):
        print('> reset_gamestate()')

        # Initialize inputs
        self.reset_for_ground_shots()
        t = self.target
        b = Ball(self.game.ball)
        c = Car(self.game.cars[self.index])
        b.location = to_vec3(self.initial_ball_location)
        b.velocity = to_vec3(self.initial_ball_velocity)
        c.location = to_vec3(self.initial_car_location)
        c.velocity = to_vec3(self.initial_car_velocity)

        # Point car at ball
        c.rotation = look_at(
            vec3(b.location[0] - c.location[0], b.location[1] - c.location[1],
                 0), vec3(0, 0, 1))
        rotator = rotation_to_euler(c.rotation)

        # Reset
        self.aerial = None
        self.dodge = None
        self.rotation_input = None
        self.timer = 0.0

        # Set gamestate
        car_state = CarState(boost_amount=100,
                             physics=Physics(
                                 location=self.initial_car_location,
                                 velocity=self.initial_car_velocity,
                                 rotation=rotator,
                                 angular_velocity=Vector3(0, 0, 0)))
        ball_state = BallState(
            Physics(location=self.initial_ball_location,
                    velocity=self.initial_ball_velocity,
                    rotation=Rotator(0, 0, 0),
                    angular_velocity=Vector3(0, 0, 0)))
        game_state = GameState(ball=ball_state, cars={self.index: car_state})
        self.set_game_state(game_state)
from rlutilities.simulation import Car, Navigator
from rlutilities.mechanics import FollowPath
from rlutilities.linear_algebra import vec3, normalize

c = Car()

c.time = 0.0
c.position = vec3(0, 0, 0)
c.velocity = vec3(1000, 0, 0)
c.angular_velocity = vec3(0.1, -2.0, 1.2)
c.on_ground = False

navigator = Navigator(c)

drive = FollowPath(c)
drive.arrival_speed = 1234
drive.path = navigator.path_to(vec3(1000, 0, 0), vec3(1, 0, 0), 1000)

for p in drive.path.points:
    print(p)
Exemple #5
0
from rlutilities.linear_algebra import vec3, mat3
from rlutilities.simulation import Game, Car, Ball, intersect

Game.set_mode("dropshot")

c = Car()

c.location = vec3(-164.13, 0, 88.79)
c.velocity = vec3(1835.87, 0, 372.271)
c.angular_velocity = vec3(0, 3.78721, 0)
c.rotation = mat3(0.9983, -5.23521e-6, 0.0582877, 5.5498e-6, 1.0, -5.23521e-6,
                  -0.0582877, 5.5498e-6, 0.9983)

b = Ball()

b.location = vec3(0, 0, 150)
b.velocity = vec3(0, 0, 0)
b.angular_velocity = vec3(0, 0, 0)

print("before:")
print(b.location)
print(b.velocity)
print(b.angular_velocity)
print("overlapping: ", intersect(c.hitbox(), b.hitbox()))

print()

b.step(0.008333, c)

print("after:")
print(b.location)
    def calculate(car: Car, ball: Ball, target: vec3, ball_predictions=None):
        # Init vars
        b = Ball(ball)
        dt = 1.0 / 60.0

        # Generate predictions of ball path
        if ball_predictions is None:
            ball_predictions = []
            for i in range(60 * 5):
                b.step(dt)
                ball_predictions.append(vec3(b.location))

        # Gradually converge on ball location by aiming at a location, checking time to that location,
        # and then aiming at the ball's NEW position. Guaranteed to converge (typically in <10 iterations)
        # unless the ball is moving away from the car faster than the car's max boost speed
        intercept = Intercept(b.location)
        intercept.purpose = 'ball'
        intercept.boost = True
        intercept_ball_position = vec3(b.location)
        collision_achieved = False
        last_horizontal_error = None
        last_horizontal_offset = None
        i = 0
        max_tries = 101
        analyzer = BoostAnalysis() if intercept.boost else ThrottleAnalysis()
        while i < max_tries:
            i += 1
            fake_car = Car(car)
            direction = normalize(intercept.location - car.location)
            fake_car.rotation = look_at(direction, fake_car.up())

            for t in range(60 * 5):
                # Step car location with throttle/boost analysis data
                # Not super efficient but POITROAE
                frame = analyzer.travel_time(dt, norm(fake_car.velocity))
                # print('in 1 frame I travel', frame.time, frame.distance, frame.speed)
                fake_car.location += direction * frame.distance
                fake_car.velocity = direction * frame.speed
                fake_car.time += dt
                ball_location = ball_predictions[t]

                # Check for collision
                p = closest_point_on_obb(fake_car.hitbox(), ball_location)
                if norm(p - ball_location) <= ball.collision_radius:
                    direction_vector = p - (fake_car.location - normalize(
                        fake_car.forward()) * 13.88)  # octane center of mass
                    direction_vector[2] = 0
                    target_direction_vector = target - ball_location
                    target_direction_vector[2] = 0
                    intercept_ball_position = ball_location
                    direction = atan2(direction_vector[1], direction_vector[0])
                    ideal_direction = atan2(target_direction_vector[1],
                                            target_direction_vector[0])
                    horizontal_error = direction - ideal_direction

                    # intercept.location = vec3(ball_location)
                    # intercept.time = fake_car.time
                    # return intercept

                    # Now descend the hit direction gradient
                    # Kick off the gradient descent with an arbitrary seed value
                    if last_horizontal_error is None:
                        last_horizontal_error = horizontal_error
                        last_horizontal_offset = 0
                        if horizontal_error > 0:
                            horizontal_offset = 25
                        else:
                            horizontal_offset = 25
                        intercept.location = ball_location - normalize(
                            fake_car.left()) * horizontal_offset
                        break

                    # Recursive case of gradient descent
                    if horizontal_offset == last_horizontal_offset:
                        gradient = 0
                    else:
                        gradient = (horizontal_error - last_horizontal_error
                                    ) / (horizontal_offset -
                                         last_horizontal_offset)

                    if gradient == 0:
                        predicted_horizontal_offset = horizontal_offset
                    else:
                        predicted_horizontal_offset = horizontal_offset - horizontal_error / gradient

                    # Base case (convergence)
                    if abs(gradient) < 0.0005:
                        print(f'convergence in {i} iterations')
                        print(f'gradient = {gradient}')
                        print(
                            f'last_horizontal_offset = {last_horizontal_offset}'
                        )
                        print(f'direction = {degrees(direction)}')
                        print(f'ideal direction = {degrees(ideal_direction)}')
                        print(f'target = {target}')
                        print(f'ball_location = {ball_location}')
                        return intercept

                    # Edge case exit: offset maxed out
                    max_horizontal_offset = car.hitbox(
                    ).half_width[1] + ball.collision_radius
                    if predicted_horizontal_offset > max_horizontal_offset:
                        predicted_horizontal_offset = max_horizontal_offset
                    elif predicted_horizontal_offset < -max_horizontal_offset:
                        predicted_horizontal_offset = -max_horizontal_offset
                    last_horizontal_offset = horizontal_offset
                    last_horizontal_error = horizontal_error
                    horizontal_offset = predicted_horizontal_offset

                    # Return the latest intercept location and continue descending the gradient
                    intercept.location = ball_location - normalize(
                        fake_car.left()) * predicted_horizontal_offset
                    print(f'iteration {i}')
                    print(f'gradient = {gradient}')
                    print(f'horizontal_offset = {horizontal_offset}')
                    print(f'horizontal_error = {degrees(horizontal_error)}')
                    # print(f'ideal direction = {degrees(ideal_direction)}')
                    break

                # Check for arrival
                if norm(fake_car.location -
                        intercept.location) < ball.collision_radius / 2:
                    intercept.location = ball_location
                    break

        if i >= max_tries:
            print(
                f'Warning: max tries ({max_tries}) exceeded for calculating intercept'
            )
        return intercept
Exemple #7
0
from rlutilities.linear_algebra import vec3, axis_to_rotation, look_at
from rlutilities.mechanics import AerialTurn
from rlutilities.simulation import Car

c = Car()

c.time = 0.0
c.location = vec3(0, 0, 500)
c.velocity = vec3(0, 0, 0)
c.angular_velocity = vec3(0.1, -2.0, 1.2)
c.rotation = axis_to_rotation(vec3(1.7, -0.5, 0.3))
c.on_ground = False

turn = AerialTurn(c)
turn.target = look_at(vec3(1, 0, 0), vec3(0, 0, 1))

turn.step(0.0166)
print(turn.controls.roll)
print(turn.controls.pitch)
print(turn.controls.yaw)

simulation = turn.simulate()
print(simulation.time)
from rlutilities.linear_algebra import vec3, vec2, mat3, mat2
from rlutilities.mechanics import Dodge
from rlutilities.simulation import Car

c = Car()

c.time = 0.0
c.location = vec3(1509.38, -686.19, 17.01)
c.velocity = vec3(-183.501, 1398., 8.321)
c.angular_velocity = vec3(0, 0, 0)
c.rotation = mat3(-0.130158, -0.991493, -0.00117062, 0.991447, -0.130163,
                  0.00948812, -0.00955977, 0.0000743404, 0.999954)
c.dodge_rotation = mat2(-0.130163, -0.991493, 0.991493, -0.130163)

c.on_ground = True
c.jumped = False
c.double_jumped = False
c.jump_timer = -1.0
c.dodge_timer = -1.0

dodge = Dodge(c)
dodge.direction = vec2(-230.03, 463.42)
dodge.duration = 0.1333
dodge.delay = 0.35

f = open("dodge_simulation.csv", "w")
for i in range(300):
    dodge.step(0.008333)
    print(c.time, dodge.controls.jump, dodge.controls.pitch,
          dodge.controls.yaw)
    c.step(dodge.controls, 0.008333)