Exemple #1
0
def generate_isotopomers(spc, N=1):
    """
    Generate all isotopomers of the parameter species by adding max. N carbon isotopes to the
    atoms of the species.
    """

    mol = spc.molecule[0]
    isotope = getElement(6, 13)

    mols = []
    add_isotope(0, N, mol, mols, isotope)

    spcs = []
    for isomol in mols:
        isotopomer = Species(molecule=[isomol], thermo=deepcopy(spc.thermo), transportData=spc.transportData, reactive=spc.reactive)
        isotopomer.generate_resonance_structures(keep_isomorphic=True)
        spcs.append(isotopomer)

    # do not retain identical species:
    filtered = []
    while spcs:
        candidate = spcs.pop()
        unique = True
        for isotopomer in filtered:
            if isotopomer.isIsomorphic(candidate):
                unique = False
                break
        if unique: filtered.append(candidate)

    if spc.thermo:
        for isotopomer in filtered:
            correct_entropy(isotopomer, spc)

    return filtered
Exemple #2
0
    def testThermoForMonocyclicAndPolycyclicSameMolecule(self):
        """
        Test a molecule that has both a polycyclic and a monocyclic ring in the same molecule
        """
        spec = Species().fromSMILES('C(CCC1C2CCC1CC2)CC1CCC1')
        spec.generateResonanceIsomers()
        thermo = self.database.getThermoDataFromGroups(spec)
        ringGroups, polycyclicGroups = self.database.getRingGroupsFromComments(
            thermo)
        self.assertEqual(len(ringGroups), 1)
        self.assertEqual(len(polycyclicGroups), 1)

        expected_matchedRingsLabels = ['Cyclobutane']
        expected_matchedRings = [
            self.database.groups['ring'].entries[label]
            for label in expected_matchedRingsLabels
        ]
        self.assertEqual(set(ringGroups), set(expected_matchedRings))

        expected_matchedPolyringsLabels = ['s3_5_5_ane']
        expected_matchedPolyrings = [
            self.database.groups['polycyclic'].entries[label]
            for label in expected_matchedPolyringsLabels
        ]

        self.assertEqual(set(polycyclicGroups), set(expected_matchedPolyrings))
def generate_isotopomers(spc, N=1):
    """
    Generate all isotopomers of the parameter species by adding max. N carbon isotopes to the
    atoms of the species.
    """

    mol = spc.molecule[0]
    isotope = getElement(6, 13)

    mols = []
    add_isotope(0, N, mol, mols, isotope)

    spcs = []
    for isomol in mols:
        isotopomer = Species(molecule=[isomol], thermo=deepcopy(spc.thermo), transportData=spc.transportData, reactive=spc.reactive)
        isotopomer.generate_resonance_structures(keep_isomorphic=True)
        spcs.append(isotopomer)

    # do not retain identical species:
    filtered = []
    while spcs:
        candidate = spcs.pop()
        unique = True
        for isotopomer in filtered:
            if isotopomer.isIsomorphic(candidate):
                unique = False
                break
        if unique: filtered.append(candidate)

    if spc.thermo:
        for isotopomer in filtered:
            correct_entropy(isotopomer, spc)

    return filtered
Exemple #4
0
def loadSpeciesDictionary(path):
    """
    Very similar method with `loadSpeciesDictionary` in RMG-Py. Here this method
    doesn't generateResonanceIsomers for the created species, will just keep it 
    as it is.
    """
    speciesDict = {}
    
    inerts = [Species().fromSMILES(inert) for inert in ('[He]', '[Ne]', 'N#N', '[Ar]')]
    with open(path, 'r') as f:
        adjlist = ''
        for line in f:
            if line.strip() == '' and adjlist.strip() != '':
                # Finish this adjacency list
                species = Species().fromAdjacencyList(adjlist)
                label = species.label
                for inert in inerts:
                    if inert.isIsomorphic(species):
                        species.reactive = False
                        break
                speciesDict[label] = species
                adjlist = ''
            else:
                if "InChI" in line:
                    line = line.split()[0] + '\n'
                if '//' in line:
                    index = line.index('//')
                    line = line[0:index]
                adjlist += line

    return speciesDict
Exemple #5
0
    def testGetRingGroupsFromComments(self):
        """
        Test that getRingGroupsFromComments method works for fused polycyclics.
        """
        from rmgpy.thermo.thermoengine import generateThermoData
        
        # set-up RMG object
        rmg = RMG()

        # load kinetic database and forbidden structures
        rmg.database = RMGDatabase()
        path = os.path.join(settings['database.directory'])

        # forbidden structure loading
        rmg.database.loadThermo(os.path.join(path, 'thermo'))

        smi = 'C12C(C3CCC2C3)C4CCC1C4'#two norbornane rings fused together
        spc = Species().fromSMILES(smi)

        spc.thermo = generateThermoData(spc)

        thermodb = rmg.database.thermo
        thermodb.getRingGroupsFromComments(spc.thermo)

        import rmgpy.data.rmg
        rmgpy.data.rmg.database = None
Exemple #6
0
 def testPolycyclicPicksBestThermo(self):
     """
     Test that RMG prioritizes thermo correctly and chooses the thermo from the isomer which
     has a non generic polycyclic ring correction
     """
     
     spec = Species().fromSMILES('C1=C[C]2CCC=C2C1')
     spec.generateResonanceIsomers()
     
     thermoDataList = []
     for molecule in spec.molecule:
         thermo = self.database.estimateRadicalThermoViaHBI(molecule, self.database.computeGroupAdditivityThermo)
         thermoDataList.append(thermo)
         
     thermoDataList.sort(key=lambda x: x.getEnthalpy(298))
     most_stable_thermo = thermoDataList[0]
     ringGroups, polycyclicGroups = self.database.getRingGroupsFromComments(most_stable_thermo)
     
     selected_thermo = self.database.getThermoDataFromGroups(spec)
     
     self.assertNotEqual(selected_thermo, thermoDataList)
     
     selected_ringGroups, selected_polycyclicGroups = self.database.getRingGroupsFromComments(selected_thermo)
     
     # The group used to estimate the most stable thermo is the generic polycyclic group and
     # therefore is not selected.  Note that this unit test will have to change if the correction is fixed later.
     self.assertEqual(polycyclicGroups[0].label, 'PolycyclicRing')
     self.assertEqual(selected_polycyclicGroups[0].label, 'C12CCC=C1CC=C2')
Exemple #7
0
    def testPolycyclicPicksBestThermo(self):
        """
        Test that RMG prioritizes thermo correctly and chooses the thermo from the isomer which
        has a non generic polycyclic ring correction
        """

        spec = Species().fromSMILES('C1=C[C]2CCC=C2C1')
        spec.generateResonanceIsomers()

        thermoDataList = []
        for molecule in spec.molecule:
            thermo = self.database.estimateRadicalThermoViaHBI(
                molecule, self.database.computeGroupAdditivityThermo)
            thermoDataList.append(thermo)

        thermoDataList.sort(key=lambda x: x.getEnthalpy(298))
        most_stable_thermo = thermoDataList[0]
        ringGroups, polycyclicGroups = self.database.getRingGroupsFromComments(
            most_stable_thermo)

        selected_thermo = self.database.getThermoDataFromGroups(spec)

        self.assertNotEqual(selected_thermo, thermoDataList)

        selected_ringGroups, selected_polycyclicGroups = self.database.getRingGroupsFromComments(
            selected_thermo)

        # The group used to estimate the most stable thermo is the generic polycyclic group and
        # therefore is not selected.  Note that this unit test will have to change if the correction is fixed later.
        self.assertEqual(polycyclicGroups[0].label, 'PolycyclicRing')
        self.assertEqual(selected_polycyclicGroups[0].label, 'C12CCC=C1CC=C2')
Exemple #8
0
 def testNewThermoGeneration(self):
     """
     Test that the new ThermoDatabase generates appropriate thermo data.
     """
     
     for smiles, symm, H298, S298, Cp300, Cp400, Cp500, Cp600, Cp800, Cp1000, Cp1500 in self.testCases:
         Cplist = [Cp300, Cp400, Cp500, Cp600, Cp800, Cp1000, Cp1500]
         molecule=Molecule(SMILES=smiles)
         species = Species(molecule=molecule)
         species.generateResonanceIsomers()
         species.molecule[0]
         thermoData = self.database.getThermoDataFromGroups(species)
         molecule = species.molecule[0]
         for mol in species.molecule[1:]:
             thermoData0 = self.database.getAllThermoData(Species(molecule=[mol]))[0][0]
             for data in self.database.getAllThermoData(Species(molecule=[mol]))[1:]:
                 if data.getEnthalpy(298) < thermoData0.getEnthalpy(298):
                     thermoData0 = data
             if thermoData0.getEnthalpy(298) < thermoData.getEnthalpy(298):
                 thermoData = thermoData0
                 molecule = mol
         self.assertAlmostEqual(H298, thermoData.getEnthalpy(298) / 4184, places=1, msg="H298 error for {0}".format(smiles))
         self.assertAlmostEqual(S298, thermoData.getEntropy(298) / 4.184, places=1, msg="S298 error for {0}".format(smiles))
         for T, Cp in zip(self.Tlist, Cplist):
             self.assertAlmostEqual(Cp, thermoData.getHeatCapacity(T) / 4.184, places=1, msg="Cp{1} error for {0}".format(smiles,T))
Exemple #9
0
    def testGetRingGroupsFromComments(self):
        """
        Test that getRingGroupsFromComments method works for fused polycyclics.
        """
        from rmgpy.thermo.thermoengine import generateThermoData

        # set-up RMG object
        rmg = RMG()

        # load kinetic database and forbidden structures
        rmg.database = RMGDatabase()
        path = os.path.join(settings['database.directory'])

        # forbidden structure loading
        rmg.database.loadThermo(os.path.join(path, 'thermo'))

        smi = 'C12C(C3CCC2C3)C4CCC1C4'  #two norbornane rings fused together
        spc = Species().fromSMILES(smi)

        spc.thermo = generateThermoData(spc)

        thermodb = rmg.database.thermo
        thermodb.getRingGroupsFromComments(spc.thermo)

        import rmgpy.data.rmg
        rmgpy.data.rmg.database = None
Exemple #10
0
    def testReact(self):
        """
        Test that reaction generation from the available families works.
        """
        spcA = Species().fromSMILES('[OH]')
        spcs = [Species().fromSMILES('CC'), Species().fromSMILES('[CH3]')]

        reactionList = list(react(spcA, spcs))
        self.assertIsNotNone(reactionList)
        self.assertTrue(all([isinstance(rxn, TemplateReaction) for rxn in reactionList]))
Exemple #11
0
    def testAddPolyRingCorrectionThermoDataFromHeuristicUsingPyrene(self):

        # create testing molecule: Pyrene with two ring of aromatic version
        # the other two ring of kekulized version
        #
        # creating it seems not natural in RMG, that's because
        # RMG cannot parse the adjacencyList of that isomer correctly
        # so here we start with pyrene radical and get the two aromatic ring isomer
        # then saturate it.
        smiles = '[C]1C=C2C=CC=C3C=CC4=CC=CC=1C4=C23'
        spe = Species().fromSMILES(smiles)
        spe.generateResonanceIsomers()
        mols = []
        for mol in spe.molecule:
            sssr0 = mol.getSmallestSetOfSmallestRings()
            aromaticRingNum = 0
            for sr0 in sssr0:
                sr0mol = Molecule(atoms=sr0)
                if isAromaticRing(sr0mol):
                    aromaticRingNum += 1
            if aromaticRingNum == 2:
                mol.saturate()
                mols.append(mol)

        ringGroupLabels = []
        polycyclicGroupLabels = []
        for mol in mols:
            polyring = mol.getDisparateRings()[1][0]

            thermoData = ThermoData(
                Tdata=([300, 400, 500, 600, 800, 1000, 1500], "K"),
                Cpdata=([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "J/(mol*K)"),
                H298=(0.0, "kJ/mol"),
                S298=(0.0, "J/(mol*K)"),
            )

            self.database._ThermoDatabase__addPolyRingCorrectionThermoDataFromHeuristic(
                thermoData, polyring)

            ringGroups, polycyclicGroups = self.database.getRingGroupsFromComments(
                thermoData)

            ringGroupLabels += [ringGroup.label for ringGroup in ringGroups]
            polycyclicGroupLabels += [
                polycyclicGroup.label for polycyclicGroup in polycyclicGroups
            ]

        self.assertIn('Benzene', ringGroupLabels)
        self.assertIn('six-inringtwodouble-12', ringGroupLabels)
        self.assertIn('Cyclohexene', ringGroupLabels)
        self.assertIn('1,3-Cyclohexadiene', ringGroupLabels)
        self.assertIn('s2_6_6_ben_ene_1', polycyclicGroupLabels)
        self.assertIn('s2_6_6_ben_ene_2', polycyclicGroupLabels)
        self.assertIn('s2_6_6_naphthalene', polycyclicGroupLabels)
Exemple #12
0
    def testGetRingGroupsFromComments(self):
        """
        Test that getRingGroupsFromComments method works for fused polycyclics.
        """
        from rmgpy.thermo.thermoengine import generateThermoData
        
        smi = 'C12C(C3CCC2C3)C4CCC1C4'#two norbornane rings fused together
        spc = Species().fromSMILES(smi)

        spc.thermo = generateThermoData(spc)

        self.database.getRingGroupsFromComments(spc.thermo)
Exemple #13
0
    def testSpeciesThermoGenerationHBIGAV(self):
        """Test thermo generation for species objects.

        Ensure that molecule list is only reordered, and not changed after group additivity"""
        spec = Species().fromSMILES('CCC[CH]c1ccccc1')
        spec.generateResonanceIsomers()
        initial = list(spec.molecule)  # Make a copy of the list
        thermo = self.database.getThermoData(spec)

        self.assertEqual(len(initial), len(spec.molecule))
        self.assertEqual(set(initial), set(spec.molecule))
        self.assertTrue('group additivity' in thermo.comment, 'Thermo not found from GAV, test purpose not fulfilled.')
Exemple #14
0
    def testGetRingGroupsFromComments(self):
        """
        Test that getRingGroupsFromComments method works for fused polycyclics.
        """
        from rmgpy.thermo.thermoengine import generateThermoData

        smi = 'C12C(C3CCC2C3)C4CCC1C4'  #two norbornane rings fused together
        spc = Species().fromSMILES(smi)

        spc.thermo = generateThermoData(spc)

        self.database.getRingGroupsFromComments(spc.thermo)
Exemple #15
0
    def testBicyclicDecompositionForPolyringUsingPyrene(self):

        # create testing molecule: Pyrene with two ring of aromatic version
        # the other two ring of kekulized version
        #
        # creating it seems not natural in RMG, that's because
        # RMG cannot parse the adjacencyList of that isomer correctly
        # so here we start with pyrene radical and get the two aromatic ring isomer
        # then saturate it.
        smiles = '[C]1C=C2C=CC=C3C=CC4=CC=CC=1C4=C23'
        spe = Species().fromSMILES(smiles)
        spe.generateResonanceIsomers()
        for mol in spe.molecule:
            sssr0 = mol.getSmallestSetOfSmallestRings()
            aromaticRingNum = 0
            for sr0 in sssr0:
                sr0mol = Molecule(atoms=sr0)
                if isAromaticRing(sr0mol):
                    aromaticRingNum += 1
            if aromaticRingNum == 2:
                break
        mol.saturate()

        # extract polyring from the molecule
        polyring = mol.getDisparateRings()[1][0]

        bicyclicList, ringOccurancesDict = bicyclicDecompositionForPolyring(
            polyring)

        # 1st test: number of cores
        self.assertEqual(len(bicyclicList), 5)

        # 2nd test: ringOccurancesDict
        ringInCoreOccurances = sorted(ringOccurancesDict.values())
        expectedRingInCoreOccurances = [2, 2, 3, 3]
        self.assertEqual(ringInCoreOccurances, expectedRingInCoreOccurances)

        # 3rd test: size of each bicyclic core
        bicyclicSizes = sorted(
            [len(bicyclic.atoms) for bicyclic in bicyclicList])
        expectedBicyclicSizes = [10, 10, 10, 10, 10]
        self.assertEqual(bicyclicSizes, expectedBicyclicSizes)

        # 4th test: bond info for members of each core
        aromaticBondNumInBicyclics = []
        for bicyclic in bicyclicList:
            aromaticBondNum = len(findAromaticBondsFromSubMolecule(bicyclic))
            aromaticBondNumInBicyclics.append(aromaticBondNum)
        aromaticBondNumInBicyclics = sorted(aromaticBondNumInBicyclics)
        expectedAromaticBondNumInBicyclics = [0, 6, 6, 6, 11]
        self.assertEqual(aromaticBondNumInBicyclics,
                         expectedAromaticBondNumInBicyclics)
Exemple #16
0
    def testAddPolyRingCorrectionThermoDataFromHeuristicUsingPyrene(self):

        # create testing molecule: Pyrene with two ring of aromatic version
        # the other two ring of kekulized version
        #
        # creating it seems not natural in RMG, that's because
        # RMG cannot parse the adjacencyList of that isomer correctly
        # so here we start with pyrene radical and get the two aromatic ring isomer
        # then saturate it.
        smiles = '[C]1C=C2C=CC=C3C=CC4=CC=CC=1C4=C23'
        spe = Species().fromSMILES(smiles)
        spe.generateResonanceIsomers()
        mols = []
        for mol in spe.molecule:
            sssr0 = mol.getSmallestSetOfSmallestRings()
            aromaticRingNum = 0
            for sr0 in sssr0:
                sr0mol = Molecule(atoms=sr0)
                if isAromaticRing(sr0mol):
                    aromaticRingNum += 1
            if aromaticRingNum == 2:
                mol.saturate()
                mols.append(mol)
        
        ringGroupLabels = []
        polycyclicGroupLabels = []
        for mol in mols:
            polyring = mol.getDisparateRings()[1][0]

            thermoData = ThermoData(
                Tdata = ([300,400,500,600,800,1000,1500],"K"),
                Cpdata = ([0.0,0.0,0.0,0.0,0.0,0.0,0.0],"J/(mol*K)"),
                H298 = (0.0,"kJ/mol"),
                S298 = (0.0,"J/(mol*K)"),
            )

            self.database._ThermoDatabase__addPolyRingCorrectionThermoDataFromHeuristic(
                thermoData, polyring)

            ringGroups, polycyclicGroups = self.database.getRingGroupsFromComments(thermoData)

            ringGroupLabels += [ringGroup.label for ringGroup in ringGroups]
            polycyclicGroupLabels += [polycyclicGroup.label for polycyclicGroup in polycyclicGroups]

        self.assertIn('Benzene', ringGroupLabels)
        self.assertIn('six-inringtwodouble-12', ringGroupLabels)
        self.assertIn('Cyclohexene', ringGroupLabels)
        self.assertIn('1,3-Cyclohexadiene', ringGroupLabels)
        self.assertIn('s2_6_6_ben_ene_1', polycyclicGroupLabels)
        self.assertIn('s2_6_6_ben_ene_2', polycyclicGroupLabels)
        self.assertIn('s2_6_6_naphthalene', polycyclicGroupLabels)
Exemple #17
0
    def testSpeciesThermoGenerationHBIGAV(self):
        """Test thermo generation for species objects.

        Ensure that molecule list is only reordered, and not changed after group additivity"""
        spec = Species().fromSMILES('CCC[CH]c1ccccc1')
        spec.generateResonanceIsomers()
        initial = list(spec.molecule)  # Make a copy of the list
        thermo = self.database.getThermoData(spec)

        self.assertEqual(len(initial), len(spec.molecule))
        self.assertEqual(set(initial), set(spec.molecule))
        self.assertTrue(
            'group additivity' in thermo.comment,
            'Thermo not found from GAV, test purpose not fulfilled.')
Exemple #18
0
    def testBicyclicDecompositionForPolyringUsingPyrene(self):

        # create testing molecule: Pyrene with two ring of aromatic version
        # the other two ring of kekulized version
        #
        # creating it seems not natural in RMG, that's because
        # RMG cannot parse the adjacencyList of that isomer correctly
        # so here we start with pyrene radical and get the two aromatic ring isomer
        # then saturate it.
        smiles = '[C]1C=C2C=CC=C3C=CC4=CC=CC=1C4=C23'
        spe = Species().fromSMILES(smiles)
        spe.generateResonanceIsomers()
        for mol in spe.molecule:
            sssr0 = mol.getSmallestSetOfSmallestRings()
            aromaticRingNum = 0
            for sr0 in sssr0:
                sr0mol = Molecule(atoms=sr0)
                if isAromaticRing(sr0mol):
                    aromaticRingNum += 1
            if aromaticRingNum == 2:
                break
        mol.saturate()
        
        # extract polyring from the molecule
        polyring = mol.getDisparateRings()[1][0]

        bicyclicList, ringOccurancesDict = bicyclicDecompositionForPolyring(polyring)

        # 1st test: number of cores
        self.assertEqual(len(bicyclicList), 5)

        # 2nd test: ringOccurancesDict
        ringInCoreOccurances = sorted(ringOccurancesDict.values())
        expectedRingInCoreOccurances = [2, 2, 3, 3]
        self.assertEqual(ringInCoreOccurances, expectedRingInCoreOccurances)

        # 3rd test: size of each bicyclic core
        bicyclicSizes = sorted([len(bicyclic.atoms) for bicyclic in bicyclicList])
        expectedBicyclicSizes = [10, 10, 10, 10, 10]
        self.assertEqual(bicyclicSizes, expectedBicyclicSizes)

        # 4th test: bond info for members of each core
        aromaticBondNumInBicyclics = []
        for bicyclic in bicyclicList:
            aromaticBondNum = len(findAromaticBondsFromSubMolecule(bicyclic))
            aromaticBondNumInBicyclics.append(aromaticBondNum)
        aromaticBondNumInBicyclics = sorted(aromaticBondNumInBicyclics)
        expectedAromaticBondNumInBicyclics = [0, 6, 6, 6, 11]
        self.assertEqual(aromaticBondNumInBicyclics, expectedAromaticBondNumInBicyclics)
Exemple #19
0
def generate():
    """
    Test that reaction generation from the available families works.
    """
    load()
    spcA = Species().fromSMILES('[OH]')
    spcs = [Species().fromSMILES('CC'), Species().fromSMILES('[CH3]')]

    reactionList = list(react(spcA, spcs))

    if not reactionList: return False

    for rxn in reactionList:
        if not isinstance(rxn, TemplateReaction): return False

    return True
Exemple #20
0
    def testAddPolyRingCorrectionThermoDataFromHeuristicUsingAromaticTricyclic(
            self):

        # create testing molecule
        #
        # creating it seems not natural in RMG, that's because
        # RMG cannot parse the adjacencyList of that isomer correctly
        # so here we start with kekulized version and generateResonanceIsomers
        # and pick the one with two aromatic rings
        smiles = 'C1=CC2C=CC=C3C=CC(=C1)C=23'
        spe = Species().fromSMILES(smiles)
        spe.generateResonanceIsomers()
        for mol in spe.molecule:
            sssr0 = mol.getSmallestSetOfSmallestRings()
            aromaticRingNum = 0
            for sr0 in sssr0:
                sr0mol = Molecule(atoms=sr0)
                if isAromaticRing(sr0mol):
                    aromaticRingNum += 1
            if aromaticRingNum == 2:
                break

        # extract polyring from the molecule
        polyring = mol.getDisparateRings()[1][0]

        thermoData = ThermoData(
            Tdata=([300, 400, 500, 600, 800, 1000, 1500], "K"),
            Cpdata=([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "J/(mol*K)"),
            H298=(0.0, "kJ/mol"),
            S298=(0.0, "J/(mol*K)"),
        )

        self.database._ThermoDatabase__addPolyRingCorrectionThermoDataFromHeuristic(
            thermoData, polyring)

        ringGroups, polycyclicGroups = self.database.getRingGroupsFromComments(
            thermoData)

        ringGroupLabels = [ringGroup.label for ringGroup in ringGroups]
        polycyclicGroupLabels = [
            polycyclicGroup.label for polycyclicGroup in polycyclicGroups
        ]

        self.assertIn('Benzene', ringGroupLabels)
        self.assertIn('Cyclopentene', ringGroupLabels)
        self.assertIn('s2_5_6_indene', polycyclicGroupLabels)
        self.assertIn('s2_6_6_naphthalene', polycyclicGroupLabels)
Exemple #21
0
 def testSymmetryNumberGeneration(self):
     """
     Test we generate symmetry numbers correctly.
     
     This uses the new thermo database to generate the H298, used 
     to select the stablest resonance isomer.
     """
     for smiles, symm, H298, S298, Cp300, Cp400, Cp500, Cp600, Cp800, Cp1000, Cp1500 in self.testCases:
         molecule = Molecule(SMILES=smiles)
         species = Species(molecule=molecule)
         species.generateResonanceIsomers()
         thermoData = self.database.getThermoDataFromGroups(
             Species(molecule=[species.molecule[0]]))
         # pick the molecule with lowest H298
         molecule = species.molecule[0]
         for mol in species.molecule[1:]:
             thermoData0 = self.database.getAllThermoData(
                 Species(molecule=[mol]))[0][0]
             for data in self.database.getAllThermoData(
                     Species(molecule=[mol]))[1:]:
                 if data.getEnthalpy(298) < thermoData0.getEnthalpy(298):
                     thermoData0 = data
             if thermoData0.getEnthalpy(298) < thermoData.getEnthalpy(298):
                 thermoData = thermoData0
                 molecule = mol
         self.assertEqual(
             molecule.calculateSymmetryNumber(),
             symm,
             msg="Symmetry number error for {0}".format(smiles))
Exemple #22
0
    def testComputeGroupAdditivityThermoForTwoRingMolecule(self):
        """
        The molecule being tested has two rings, one is 13cyclohexadiene5methylene
        the other is benzene ring. This method is to test thermo estimation will
        give two different corrections accordingly. 
        """
        spec = Species().fromSMILES('CCCCCCCCCCCC(CC=C1C=CC=CC1)c1ccccc1')
        spec.generateResonanceIsomers()
        thermo = self.database.getThermoDataFromGroups(spec)

        ringGroups, polycyclicGroups = self.database.getRingGroupsFromComments(thermo)
        self.assertEqual(len(ringGroups),2)
        self.assertEqual(len(polycyclicGroups),0)

        expected_matchedRingsLabels = ['13cyclohexadiene5methylene', 'Benzene']
        expected_matchedRings = [self.database.groups['ring'].entries[label] for label in expected_matchedRingsLabels]

        self.assertEqual(set(ringGroups), set(expected_matchedRings))
Exemple #23
0
    def testThermoForMonocyclicAndPolycyclicSameMolecule(self):
        """
        Test a molecule that has both a polycyclic and a monocyclic ring in the same molecule
        """
        spec = Species().fromSMILES('C(CCC1C2CCC1CC2)CC1CCC1')
        spec.generateResonanceIsomers()
        thermo = self.database.getThermoDataFromGroups(spec)
        ringGroups, polycyclicGroups = self.database.getRingGroupsFromComments(thermo)
        self.assertEqual(len(ringGroups),1)
        self.assertEqual(len(polycyclicGroups),1)
        
        expected_matchedRingsLabels = ['Cyclobutane']
        expected_matchedRings = [self.database.groups['ring'].entries[label] for label in expected_matchedRingsLabels]
        self.assertEqual(set(ringGroups), set(expected_matchedRings))
        
        expected_matchedPolyringsLabels = ['s3_5_5_ane']
        expected_matchedPolyrings = [self.database.groups['polycyclic'].entries[label] for label in expected_matchedPolyringsLabels]

        self.assertEqual(set(polycyclicGroups), set(expected_matchedPolyrings))
Exemple #24
0
    def testAddPolyRingCorrectionThermoDataFromHeuristicUsingAromaticTricyclic(self):

        # create testing molecule
        #
        # creating it seems not natural in RMG, that's because
        # RMG cannot parse the adjacencyList of that isomer correctly
        # so here we start with kekulized version and generateResonanceIsomers
        # and pick the one with two aromatic rings
        smiles = 'C1=CC2C=CC=C3C=CC(=C1)C=23'
        spe = Species().fromSMILES(smiles)
        spe.generateResonanceIsomers()
        for mol in spe.molecule:
            sssr0 = mol.getSmallestSetOfSmallestRings()
            aromaticRingNum = 0
            for sr0 in sssr0:
                sr0mol = Molecule(atoms=sr0)
                if isAromaticRing(sr0mol):
                    aromaticRingNum += 1
            if aromaticRingNum == 2:
                break
        
        # extract polyring from the molecule
        polyring = mol.getDisparateRings()[1][0]

        thermoData = ThermoData(
            Tdata = ([300,400,500,600,800,1000,1500],"K"),
            Cpdata = ([0.0,0.0,0.0,0.0,0.0,0.0,0.0],"J/(mol*K)"),
            H298 = (0.0,"kJ/mol"),
            S298 = (0.0,"J/(mol*K)"),
        )

        self.database._ThermoDatabase__addPolyRingCorrectionThermoDataFromHeuristic(
            thermoData, polyring)

        ringGroups, polycyclicGroups = self.database.getRingGroupsFromComments(thermoData)

        ringGroupLabels = [ringGroup.label for ringGroup in ringGroups]
        polycyclicGroupLabels = [polycyclicGroup.label for polycyclicGroup in polycyclicGroups]

        self.assertIn('Benzene', ringGroupLabels)
        self.assertIn('Cyclopentene', ringGroupLabels)
        self.assertIn('s2_5_6_indene', polycyclicGroupLabels)
        self.assertIn('s2_6_6_naphthalene', polycyclicGroupLabels)
Exemple #25
0
    def testFindAromaticBondsFromSubMolecule(self):

        smiles = "C1=CC=C2C=CC=CC2=C1"
        spe = Species().fromSMILES(smiles)
        spe.generateResonanceIsomers()
        mol = spe.molecule[1]

        # get two SSSRs
        SSSR = mol.getSmallestSetOfSmallestRings()
        ring1 = SSSR[0]
        ring2 = SSSR[1]

        # create two testing submols
        submol1 = Molecule(atoms=ring1)
        submol2 = Molecule(atoms=ring2)

        # check with expected results
        self.assertEqual(len(findAromaticBondsFromSubMolecule(submol1)), 6)
        self.assertEqual(len(findAromaticBondsFromSubMolecule(submol2)), 6)
Exemple #26
0
    def testFindAromaticBondsFromSubMolecule(self):

        smiles = "C1=CC=C2C=CC=CC2=C1"
        spe = Species().fromSMILES(smiles)
        spe.generateResonanceIsomers()
        mol = spe.molecule[1]

        # get two SSSRs
        SSSR = mol.getSmallestSetOfSmallestRings()
        ring1 = SSSR[0]
        ring2 = SSSR[1]

        # create two testing submols
        submol1 = Molecule(atoms=ring1)
        submol2 = Molecule(atoms=ring2)

        # check with expected results
        self.assertEqual(len(findAromaticBondsFromSubMolecule(submol1)), 6)
        self.assertEqual(len(findAromaticBondsFromSubMolecule(submol2)), 6)
Exemple #27
0
def generate():
    """
    Test that reaction generation from the available families works.
    """
    load()
    spcA = Species().fromSMILES('[OH]')
    spcs = [Species().fromSMILES('CC'), Species().fromSMILES('[CH3]')]
    spcTuples = [(spcA, spc) for spc in spcs]
    procnum = 2

    reactionList = list(
        itertools.chain.from_iterable(react(spcTuples, procnum)))

    if not reactionList: return False

    for rxn in reactionList:
        if not isinstance(rxn, TemplateReaction): return False

    return True
Exemple #28
0
def kinetics(label, kinetics):
    reactants, products = label.split('_')
    reactants = reactants.split('+')
    products = products.split('+')

    reaction = Reaction(reactants=[], products=[], reversible=True)
    
    for in_list, out_list in [(reactants, reaction.reactants), (products, reaction.products)]:
        for i, smiles in enumerate(in_list):
            if smiles not in species_dict:
                species = Species().fromSMILES(smiles)
                species_dict[smiles] = species
                species.label = '{0}({1})'.format(species.toChemkin(), len(species_dict))
            out_list.append(species_dict[smiles])
    
    reaction.kinetics = kinetics
    print repr(reaction)
    display(reaction)
    
    addReactionToKineticsLibrary(reaction)
Exemple #29
0
    def testComputeGroupAdditivityThermoForTwoRingMolecule(self):
        """
        The molecule being tested has two rings, one is 13cyclohexadiene5methylene
        the other is benzene ring. This method is to test thermo estimation will
        give two different corrections accordingly. 
        """
        spec = Species().fromSMILES('CCCCCCCCCCCC(CC=C1C=CC=CC1)c1ccccc1')
        spec.generateResonanceIsomers()
        thermo = self.database.getThermoDataFromGroups(spec)

        ringGroups, polycyclicGroups = self.database.getRingGroupsFromComments(
            thermo)
        self.assertEqual(len(ringGroups), 2)
        self.assertEqual(len(polycyclicGroups), 0)

        expected_matchedRingsLabels = ['13cyclohexadiene5methylene', 'Benzene']
        expected_matchedRings = [
            self.database.groups['ring'].entries[label]
            for label in expected_matchedRingsLabels
        ]

        self.assertEqual(set(ringGroups), set(expected_matchedRings))
Exemple #30
0
    def testSymmetryContributionRadicals(self):
        """
        Test that the symmetry contribution is correctly added for radicals
        estimated via the HBI method. 
        """
        spc = Species(molecule=[Molecule().fromSMILES('[CH3]')])

        thermoData_lib = self.database.getThermoDataFromLibraries(spc)[0]

        thermoData_ga = self.database.getThermoDataFromGroups(spc)

        self.assertAlmostEqual(thermoData_lib.getEntropy(298.),
                               thermoData_ga.getEntropy(298.), 0)
Exemple #31
0
 def testSymmetryNumberGeneration(self):
     """
     Test we generate symmetry numbers correctly.
     
     This uses the new thermo database to generate the H298, used 
     to select the stablest resonance isomer.
     """
     for smiles, symm, H298, S298, Cp300, Cp400, Cp500, Cp600, Cp800, Cp1000, Cp1500 in self.testCases:
         molecule=Molecule(SMILES=smiles)
         species = Species(molecule=molecule)
         species.generateResonanceIsomers()
         thermoData = self.database.getThermoDataFromGroups(Species(molecule=[species.molecule[0]]))
         # pick the molecule with lowest H298
         molecule = species.molecule[0]
         for mol in species.molecule[1:]:
             thermoData0 = self.database.getAllThermoData(Species(molecule=[mol]))[0][0]
             for data in self.database.getAllThermoData(Species(molecule=[mol]))[1:]:
                 if data.getEnthalpy(298) < thermoData0.getEnthalpy(298):
                     thermoData0 = data
             if thermoData0.getEnthalpy(298) < thermoData.getEnthalpy(298):
                 thermoData = thermoData0
                 molecule = mol
         self.assertEqual(molecule.calculateSymmetryNumber(), symm, msg="Symmetry number error for {0}".format(smiles))
Exemple #32
0
    def testNewThermoGeneration(self):
        """
        Test that the new ThermoDatabase generates appropriate thermo data.
        """

        for smiles, symm, H298, S298, Cp300, Cp400, Cp500, Cp600, Cp800, Cp1000, Cp1500 in self.testCases:
            Cplist = [Cp300, Cp400, Cp500, Cp600, Cp800, Cp1000, Cp1500]
            species = Species().fromSMILES(smiles)
            species.generateResonanceIsomers()
            thermoData = self.database.getThermoDataFromGroups(species)
            molecule = species.molecule[0]
            for mol in species.molecule[1:]:
                thermoData0 = self.database.getAllThermoData(
                    Species(molecule=[mol]))[0][0]
                for data in self.database.getAllThermoData(
                        Species(molecule=[mol]))[1:]:
                    if data[0].getEnthalpy(298) < thermoData0.getEnthalpy(298):
                        thermoData0 = data[0]
                if thermoData0.getEnthalpy(298) < thermoData.getEnthalpy(298):
                    thermoData = thermoData0
                    molecule = mol
            self.assertAlmostEqual(
                H298,
                thermoData.getEnthalpy(298) / 4184,
                places=1,
                msg="H298 error for {0}. Expected {1}, but calculated {2}.".
                format(smiles, H298,
                       thermoData.getEnthalpy(298) / 4184))
            self.assertAlmostEqual(
                S298,
                thermoData.getEntropy(298) / 4.184,
                places=1,
                msg="S298 error for {0}. Expected {1}, but calculated {2}.".
                format(smiles, S298,
                       thermoData.getEntropy(298) / 4.184))
            for T, Cp in zip(self.Tlist, Cplist):
                self.assertAlmostEqual(
                    Cp,
                    thermoData.getHeatCapacity(T) / 4.184,
                    places=1,
                    msg="Cp{3} error for {0}. Expected {1} but calculated {2}."
                    .format(smiles, Cp,
                            thermoData.getHeatCapacity(T) / 4.184, T))
delimiter = '\t'
JtoCal = 1.0/4.184

rmg = RMG()
rmg.database = RMGDatabase()
path = os.path.join(settings['database.directory'])
rmg.database.loadThermo(os.path.join(path,'thermo'))

fw = open('output_thermo.txt','w')
fw.write('Name\tSMILES\tH298\tS298\t300 K\t400 K\t500 K\t600 K\t800 K\t1000 K\t1500 K\tComment\n')

for mymol in pybel.readfile("xyz","testfile.txt"):
	bel_mol = mymol.write('smi')
	mol_smi = bel_mol.split()[0]
	mol_name = bel_mol.split()[1]
	print mol_name

	spc = Species().fromSMILES(mol_smi)
	print type(spc)
	print spc.toAdjacencyList()
	tdt = rmg.database.thermo.getThermoDataFromGroups(spc)
	
	tempstr = mol_name + delimiter + mol_smi + delimiter + str(tdt.H298.value*JtoCal) + delimiter + str(tdt.S298.value*JtoCal)
	tempstr = tempstr + delimiter + str(tdt.Cpdata.value[0]*JtoCal) + delimiter + str(tdt.Cpdata.value[1]*JtoCal) + delimiter + str(tdt.Cpdata.value[2]*JtoCal)
	tempstr = tempstr + delimiter + str(tdt.Cpdata.value[3]*JtoCal) + delimiter + str(tdt.Cpdata.value[4]*JtoCal) + delimiter + str(tdt.Cpdata.value[5]*JtoCal)
	tempstr = tempstr + delimiter + str(tdt.Cpdata.value[6]*JtoCal) + delimiter + tdt.comment + '\n'
	fw.write( tempstr )

fw.close()

            reactants=reaction.reactants,
            products=reaction.products,
            reversible=reaction.reversible,
            kinetics=reaction.kinetics,
            library=libraryName,
        )
        reactionList.append(library_reaction)

    speciesList = []
    index = 0
    speciesDict = kineticLibrary.getSpecies(
        os.path.join(settings["database.directory"], "kinetics", "libraries", libraryName, "dictionary.txt")
    )
    for spec in speciesDict.values():
        index = index + 1
        species = Species(molecule=spec.molecule)
        species.getThermoData()
        species.index = index
        speciesList.append(species)

    for reaction in reactionList:
        for reactant in reaction.reactants:
            for spec in speciesList:
                if reactant.isIsomorphic(spec):
                    reactant.index = spec.index
                    spec.label = reactant.label
        for product in reaction.products:
            for spec in speciesList:
                if product.isIsomorphic(spec):
                    product.index = spec.index
                    spec.label = product.label
Exemple #35
0
    def testParseThermoComments(self):
        """
        Test that the ThermoDatabase.extractSourceFromComments function works properly
        on various thermo comments.
        """
        from rmgpy.thermo import NASA, NASAPolynomial
        # Pure group additivity thermo
        propane = Species(
            index=3,
            label="Propane",
            thermo=NASA(
                polynomials=[
                    NASAPolynomial(coeffs=[
                        3.05257, 0.0125099, 3.79386e-05, -5.12022e-08,
                        1.87065e-11, -14454.2, 10.0672
                    ],
                                   Tmin=(100, 'K'),
                                   Tmax=(986.57, 'K')),
                    NASAPolynomial(coeffs=[
                        5.91316, 0.0218763, -8.17661e-06, 1.49855e-09,
                        -1.05991e-13, -16038.9, -8.86555
                    ],
                                   Tmin=(986.57, 'K'),
                                   Tmax=(5000, 'K'))
                ],
                Tmin=(100, 'K'),
                Tmax=(5000, 'K'),
                comment=
                """Thermo group additivity estimation: group(Cs-CsCsHH) + gauche(Cs(CsCsRR)) + other(R) + group(Cs-CsHHH) + gauche(Cs(Cs(CsRR)RRR)) + other(R) + group(Cs-CsHHH) + gauche(Cs(Cs(CsRR)RRR)) + other(R)"""
            ),
            molecule=[Molecule(SMILES="CCC")])

        source = self.database.extractSourceFromComments(propane)
        self.assertTrue(
            'GAV' in source,
            'Should have found that propane thermo source is GAV.')
        self.assertEqual(len(source['GAV']['group']), 2)
        self.assertEqual(len(source['GAV']['other']), 1)
        self.assertEqual(len(source['GAV']['gauche']), 2)

        # Pure library thermo
        dipk = Species(index=1,
                       label="DIPK",
                       thermo=NASA(polynomials=[
                           NASAPolynomial(coeffs=[
                               3.35002, 0.017618, -2.46235e-05, 1.7684e-08,
                               -4.87962e-12, 35555.7, 5.75335
                           ],
                                          Tmin=(100, 'K'),
                                          Tmax=(888.28, 'K')),
                           NASAPolynomial(coeffs=[
                               6.36001, 0.00406378, -1.73509e-06, 5.05949e-10,
                               -4.49975e-14, 35021, -8.41155
                           ],
                                          Tmin=(888.28, 'K'),
                                          Tmax=(5000, 'K'))
                       ],
                                   Tmin=(100, 'K'),
                                   Tmax=(5000, 'K'),
                                   comment="""Thermo library: DIPK"""),
                       molecule=[Molecule(SMILES="CC(C)C(=O)C(C)C")])

        source = self.database.extractSourceFromComments(dipk)
        self.assertTrue('Library' in source)

        # Mixed library and HBI thermo
        dipk_rad = Species(
            index=4,
            label="R_tert",
            thermo=NASA(polynomials=[
                NASAPolynomial(coeffs=[
                    2.90061, 0.0298018, -7.06268e-05, 6.9636e-08, -2.42414e-11,
                    54431, 5.44492
                ],
                               Tmin=(100, 'K'),
                               Tmax=(882.19, 'K')),
                NASAPolynomial(coeffs=[
                    6.70999, 0.000201027, 6.65617e-07, -7.99543e-11,
                    4.08721e-15, 54238.6, -9.73662
                ],
                               Tmin=(882.19, 'K'),
                               Tmax=(5000, 'K'))
            ],
                        Tmin=(100, 'K'),
                        Tmax=(5000, 'K'),
                        comment="""Thermo library: DIPK + radical(C2CJCHO)"""),
            molecule=[
                Molecule(SMILES="C[C](C)C(=O)C(C)C"),
                Molecule(SMILES="CC(C)=C([O])C(C)C")
            ])

        source = self.database.extractSourceFromComments(dipk_rad)
        self.assertTrue('Library' in source)
        self.assertTrue('GAV' in source)
        self.assertEqual(len(source['GAV']['radical']), 1)

        # Pure QM thermo
        cineole = Species(
            index=6,
            label="Cineole",
            thermo=NASA(polynomials=[
                NASAPolynomial(coeffs=[
                    -0.324129, 0.0619667, 9.71008e-05, -1.60598e-07,
                    6.28285e-11, -38699.9, 29.3686
                ],
                               Tmin=(100, 'K'),
                               Tmax=(985.52, 'K')),
                NASAPolynomial(coeffs=[
                    20.6043, 0.0586913, -2.22152e-05, 4.19949e-09,
                    -3.06046e-13, -46791, -91.4152
                ],
                               Tmin=(985.52, 'K'),
                               Tmax=(5000, 'K'))
            ],
                        Tmin=(100, 'K'),
                        Tmax=(5000, 'K'),
                        comment="""QM MopacMolPM3 calculation attempt 1"""),
            molecule=[Molecule(SMILES="CC12CCC(CC1)C(C)(C)O2")])

        source = self.database.extractSourceFromComments(cineole)
        self.assertTrue('QM' in source)

        # Mixed QM and HBI thermo
        cineole_rad = Species(
            index=7,
            label="CineoleRad",
            thermo=NASA(
                polynomials=[
                    NASAPolynomial(coeffs=[
                        -0.2897, 0.0627717, 8.63299e-05, -1.47868e-07,
                        5.81665e-11, -14017.6, 31.0266
                    ],
                                   Tmin=(100, 'K'),
                                   Tmax=(988.76, 'K')),
                    NASAPolynomial(coeffs=[
                        20.4836, 0.0562555, -2.13903e-05, 4.05725e-09,
                        -2.96023e-13, -21915, -88.1205
                    ],
                                   Tmin=(988.76, 'K'),
                                   Tmax=(5000, 'K'))
                ],
                Tmin=(100, 'K'),
                Tmax=(5000, 'K'),
                comment=
                """QM MopacMolPM3 calculation attempt 1 + radical(Cs_P)"""),
            molecule=[Molecule(SMILES="[CH2]C12CCC(CC1)C(C)(C)O2")])

        source = self.database.extractSourceFromComments(cineole_rad)
        self.assertTrue('QM' in source)
        self.assertTrue('GAV' in source)
        self.assertEqual(len(source['GAV']['radical']), 1)

        # No thermo comments
        other = Species(
            index=7,
            label="CineoleRad",
            thermo=NASA(
                polynomials=[
                    NASAPolynomial(coeffs=[
                        -0.2897, 0.0627717, 8.63299e-05, -1.47868e-07,
                        5.81665e-11, -14017.6, 31.0266
                    ],
                                   Tmin=(100, 'K'),
                                   Tmax=(988.76, 'K')),
                    NASAPolynomial(coeffs=[
                        20.4836, 0.0562555, -2.13903e-05, 4.05725e-09,
                        -2.96023e-13, -21915, -88.1205
                    ],
                                   Tmin=(988.76, 'K'),
                                   Tmax=(5000, 'K'))
                ],
                Tmin=(100, 'K'),
                Tmax=(5000, 'K'),
            ),
            molecule=[Molecule(SMILES="[CH2]C12CCC(CC1)C(C)(C)O2")])

        # Function should complain if there's no thermo comments
        self.assertRaises(self.database.extractSourceFromComments(cineole_rad))

        # Check a dummy species that has plus and minus thermo group contributions
        polycyclic = Species(
            index=7,
            label="dummy",
            thermo=NASA(
                polynomials=[
                    NASAPolynomial(coeffs=[
                        -0.2897, 0.0627717, 8.63299e-05, -1.47868e-07,
                        5.81665e-11, -14017.6, 31.0266
                    ],
                                   Tmin=(100, 'K'),
                                   Tmax=(988.76, 'K')),
                    NASAPolynomial(coeffs=[
                        20.4836, 0.0562555, -2.13903e-05, 4.05725e-09,
                        -2.96023e-13, -21915, -88.1205
                    ],
                                   Tmin=(988.76, 'K'),
                                   Tmax=(5000, 'K'))
                ],
                Tmin=(100, 'K'),
                Tmax=(5000, 'K'),
                comment=
                """Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-CsCsHH) - ring(Benzene)"""
            ),
            molecule=[Molecule(SMILES="[CH2]C12CCC(CC1)C(C)(C)O2")])

        source = self.database.extractSourceFromComments(polycyclic)
        self.assertTrue('GAV' in source)
        self.assertEqual(source['GAV']['ring'][0][1],
                         -1)  # the weight of benzene contribution should be -1
        self.assertEqual(
            source['GAV']['group'][0][1],
            2)  # weight of the group(Cs-CsCsHH) conbtribution should be 2
Exemple #36
0
        library_reaction = LibraryReaction(index=reaction.index,
                                           reactants=reaction.reactants,
                                           products=reaction.products,
                                           reversible=reaction.reversible,
                                           kinetics=reaction.kinetics,
                                           library=library_name)
        reaction_list.append(library_reaction)

    species_list = []
    index = 0
    species_dict = kinetic_library.get_species(
        os.path.join(settings['database.directory'], 'kinetics', 'libraries',
                     library_name, 'dictionary.txt'))
    for spec in list(species_dict.values()):
        index = index + 1
        species = Species(molecule=spec.molecule)
        species.get_thermo_data()
        species.index = index
        species_list.append(species)

    for reaction in reaction_list:
        for reactant in reaction.reactants:
            for spec in species_list:
                if reactant.is_isomorphic(spec):
                    reactant.index = spec.index
                    spec.label = reactant.label
        for product in reaction.products:
            for spec in species_list:
                if product.is_isomorphic(spec):
                    product.index = spec.index
                    spec.label = product.label
        library_reaction = LibraryReaction(index=reaction.index,
                                           reactants=reaction.reactants,
                                           products=reaction.products,
                                           reversible=reaction.reversible,
                                           kinetics=reaction.kinetics,
                                           library=libraryName)
        reactionList.append(library_reaction)

    speciesList = []
    index = 0
    speciesDict = kineticLibrary.getSpecies(
        os.path.join(settings['database.directory'], 'kinetics', 'libraries',
                     libraryName, 'dictionary.txt'))
    for spec in speciesDict.values():
        index = index + 1
        species = Species(molecule=spec.molecule)
        species.getThermoData()
        species.index = index
        speciesList.append(species)

    for reaction in reactionList:
        for reactant in reaction.reactants:
            for spec in speciesList:
                if reactant.isIsomorphic(spec):
                    reactant.index = spec.index
                    spec.label = reactant.label
        for product in reaction.products:
            for spec in speciesList:
                if product.isIsomorphic(spec):
                    product.index = spec.index
                    spec.label = product.label
Exemple #38
0
    kineticLibrary = database.kinetics.libraries[libraryName]

    reactionList = []
    for index, entry in kineticLibrary.entries.iteritems():
        reaction = entry.item
        reaction.kinetics = entry.data
        reactionList.append(reaction)

    speciesList = []
    index = 0
    speciesDict = kineticLibrary.getSpecies(
        os.path.join(settings['database.directory'], 'kinetics', 'libraries',
                     libraryName, 'dictionary.txt'))
    for spec in speciesDict.values():
        index = index + 1
        species = Species(molecule=spec.molecule)
        species.generateThermoData(database)
        species.index = index
        speciesList.append(species)

    for reaction in reactionList:
        for reactant in reaction.reactants:
            for spec in speciesList:
                if reactant.isIsomorphic(spec):
                    reactant.index = spec.index
                    spec.label = reactant.label
        for product in reaction.products:
            for spec in speciesList:
                if product.isIsomorphic(spec):
                    product.index = spec.index
                    spec.label = product.label
    

    print 'Loading {0} library'.format(libraryName)
    kineticLibrary = database.kinetics.libraries[libraryName]
    
    reactionList = []    
    for index, entry in kineticLibrary.entries.iteritems():
        reaction = entry.item
        reaction.kinetics = entry.data
        reactionList.append(reaction)

    speciesList = []
    index = 0
    for spec in kineticLibrary.getSpecies().values():
        index = index + 1
        species = Species(molecule = spec.molecule)
        species.generateThermoData(database)
        species.index = index
        speciesList.append(species)

    for reaction in reactionList:
        for reactant in reaction.reactants:
            for spec in speciesList:
                if reactant.isIsomorphic(spec):
                    reactant.index = spec.index
                    spec.label = reactant.label
        for product in reaction.products:
            for spec in speciesList:
                if product.isIsomorphic(spec):
                    product.index = spec.index
                    spec.label = product.label