def init_model(dim, Q, cond_num):
    def search_optm_cond(V, cond_num_star):
        min_c = 0
        max_c = 100

        if cond_num_star == 1:
            return 0, 1

        while True:
            curr_c = (min_c + max_c) / 2.
            M = np.eye(dim, ) + curr_c * V
            eigvals = np.linalg.eigvals(M)
            assert np.all(eigvals > 0), 'illegal input'
            val = np.max(eigvals) / np.min(eigvals)
            if val - cond_num_star > 0.3:
                max_c = curr_c
            elif val - cond_num_star < -0.3:
                min_c = curr_c
            else:
                return curr_c, val

    t0 = np.eye(dim)

    mu0 = sharedX(np_rng.uniform(-3, 3, size=(dim, )))
    V = np.dot(
        np.dot(Q.T, np.diag(1. + np.random.uniform(0, 1, size=(dim, )))), Q)
    coeff, cond_approx = search_optm_cond(V, cond_num)
    M = np.eye(dim, ) + coeff * V

    A0 = sharedX(np.linalg.inv(M))
    model_params = {'mu': mu0, 'A': A0}

    ### score function
    score_q = score_gaussian
    log_prob = logp_gaussian

    ## ground truth
    gt = np.random.multivariate_normal(mu0.get_value(),
                                       M, (10000, ),
                                       check_valid='raise')

    return model_params, score_q, log_prob, gt
Exemple #2
0
def init_model():

    G = nx.grid_2d_graph(args.grid, args.grid)
    A = np.asarray(nx.adjacency_matrix(G).todense())

    #A = A * np_rng.uniform(-0.1, 0.1, size=A.shape)
    noise = np.tril(np_rng.uniform(-0.1, 0.1, size=A.shape))
    noise = noise + noise.T
    A = A * noise

    np.fill_diagonal(A, np.sum(np.abs(A), axis=1) + .1)

    if not np.all(np.linalg.eigvals(A) > 0) or not np.all(
            np.linalg.eigvals(np.linalg.inv(A)) > 0):
        raise NotImplementedError

    b = np_rng.normal(0, 1, size=(args.grid**2, 1))

    mu0 = sharedX(np.dot(np.linalg.inv(A), b).flatten())
    A0 = sharedX(A)

    model_params = {'mu': mu0, 'A': A0}

    ## score function
    score_q = score_gaussian

    ## ground truth samples
    gt = np.random.multivariate_normal(mean=mu0.get_value().flatten(),
                                       cov=np.linalg.inv(A),
                                       size=(10000, ),
                                       check_valid='raise')

    ## adjacency matrix
    W = np.zeros(A.shape).astype(int)
    W[A != 0] = 1

    assert np.all(np.sum(W, axis=1) > 0), 'illegal inputs'
    assert np.sum((W - W.T)**2) < 1e-8, 'illegal inputs'
    return model_params, score_q, gt, W
def random_features_kernel(x, n_features, score_q, fixed_weights=True, cos_feat_dim_scale=True, **model_params):
    dim = x.get_value().shape[1]

    H = sqr_dist(x, x)
    h = median_distance(H)
    #h = select_h_by_ksdv(x, score_q, **model_params)
    gamma = 1./h

    if fixed_weights:
        random_offset = sharedX(np_rng.uniform(0, 2*pi, (n_features,)))
        weights = sharedX(np_rng.normal(0, 1, (dim, n_features)))
        random_weights = T.sqrt(2*gamma) * weights
    else:
        #random_weights = T.sqrt(2 * gamma) * t_rng.normal(
        #     (x.shape[1], n_features))

        #random_offset = t_rng.uniform((n_features,), 0, 2 * pi)
        raise NotImplementedError

    if cos_feat_dim_scale:
        alpha = T.sqrt(2.) / T.sqrt(n_features).astype(theano.config.floatX)
    else:
        alpha = T.sqrt(2.)

    coff = T.dot(x, random_weights) + random_offset
    projection = alpha * T.cos(coff)
    
    kxy = T.dot(projection, projection.T)

    sinf = -alpha*T.sin(coff)
    wd = random_weights.T

    inner = T.sum(sinf, axis=0).dimshuffle(0,'x') * wd
    dxkxy = T.dot(projection, inner)

    return kxy, dxkxy
Exemple #4
0
 def __call__(self, shape):
     return sharedX(np_rng.uniform(low=-self.scale, high=self.scale, size=shape))
Exemple #5
0
 def __call__(self, shape, name=None):
     return sharedX(np_rng.uniform(low=-self.scale, high=self.scale, size=shape), name=name)