def train(self, lr=cfg.lr):
     train_data = self.reader.mini_batch_iterator(self.reader.train,
                                                  requires_speaker=True)
     optim = torch.optim.Adam(self.clf.parameters(), lr=lr)
     criterion = torch.nn.CrossEntropyLoss()
     for itr, total_iter, feat, label, files, speaker in train_data:
         optim.zero_grad()
         features = [
             self.feature_extract_mfcc(a, b, filename, augment=True)
             for (a, b), filename in zip(feat, files)
         ]
         features = [_ for _ in zip(*features)]
         features[0], features[1], features[2] = self.pad_batch(
             features[0], features[1], features[2])
         features[3], features[4], features[5] = np.array(
             features[3]), np.array(features[4]), np.array(features[5])
         mfcc0, mfcc1, mfcc2 = cuda_(Variable(torch.from_numpy(features[0]).float())), \
                               cuda_(Variable(torch.from_numpy(features[1]).float())),\
                               cuda_(Variable(torch.from_numpy(features[2]).float()))
         mfcc0, mfcc1, mfcc2 = mfcc0.transpose(0, 1), mfcc1.transpose(
             0, 1), mfcc2.transpose(0, 1)
         label = cuda_(Variable(torch.LongTensor(label)))
         speaker = cuda_(Variable(torch.LongTensor(speaker)))
         out1, out2 = self.clf(mfcc0, mfcc1, mfcc2, features[3])
         loss1 = criterion(out1, label)
         loss2 = criterion(out2, speaker)
         loss = loss1 + loss2
         loss.backward()
         optim.step()
         printer.info(
             '%d/%d loss:%f %f %f' %
             (itr, total_iter, loss1.data[0], loss2.data[0], loss.data[0]))
 def test_iter(self, itr, total_iter, feat, label, files):
     features = [
         self.feature_extract_mfcc(a, b, filename)
         for (a, b), filename in zip(feat, files)
     ]
     features = [_ for _ in zip(*features)]
     features[0], features[1], features[2] = self.pad_batch(
         features[0], features[1], features[2])
     features[3], features[4], features[5] = np.array(
         features[3]), np.array(features[4]), np.array(features[5])
     mfcc0, mfcc1, mfcc2 = cuda_(Variable(torch.from_numpy(features[0]).float())), \
                           cuda_(Variable(torch.from_numpy(features[1]).float())), \
                           cuda_(Variable(torch.from_numpy(features[2]).float()))
     mfcc0, mfcc1, mfcc2 = mfcc0.transpose(0, 1), mfcc1.transpose(
         0, 1), mfcc2.transpose(0, 1)
     out, _ = self.clf(mfcc0, mfcc1, mfcc2, features[3])
     out = F.softmax(out, dim=1)
     prob, pred_ = torch.max(out, 1)
     pred_ = pred_.data.cpu().numpy().tolist()
     prob = prob.data.cpu().numpy().tolist()
     return pred_, prob
Exemple #3
0
 def train(self, lr=cfg.lr):
     #train_data = self.reader.mini_batch_iterator(self.reader.train)
     train_data = self.reader.mini_batch_iterator(self.reader.train)
     optim = torch.optim.Adam(self.clf.parameters(), lr=lr)
     criterion = torch.nn.CrossEntropyLoss()
     for itr, total_iter, feat, label, files in train_data:
         optim.zero_grad()
         inp, len0 = self.get_batch_full(feat, files, augment=True)
         label = cuda_(Variable(torch.LongTensor(label)))
         out = self.clf(inp, len0)
         loss = criterion(out, label)
         loss.backward()
         optim.step()
         printer.info('%d/%d loss:%f' % (itr, total_iter, loss.data[0]))
Exemple #4
0
def cvar(arr):
    v = cuda_(Variable(torch.from_numpy(arr).float()))
    return v
Exemple #5
0
 def __init__(self):
     super().__init__()
     self.clf = HMRNN()
     #self.clf = CNN_SP()
     self.clf = cuda_(self.clf)
 def __init__(self):
     super().__init__()
     self.clf = AdvHRNN()
     self.clf = cuda_(self.clf)