def plot_samp_pos(G,s,eidx): # plot_samp_pos(G,s,eidx) # Plot a position on the network # G- road network # (s,eidx)- position (float and integer) elist = G.edges() n = len(s) for i in range(n): e = elist[eidx[i]] pos0 = G.node[e[0]]["pos"] pos1 = G.node[e[1]]["pos"] pos = pos0+s[i]*(pos1-pos0)/roadnet.mynorm(pos1-pos0) plt.plot(pos[0],pos[1],'.',color=(0,0.7,0),markersize=7.)
def calcpostprobs_case2(G,z,t,n,K,vmean,vvar,ups): # [pp,ppos,wp,seg_idx,ssamp] = calcpostprobs_case2(G,z,t,n,vmean,vvar,ups): # Improved approximation of the posterior # Path candidate selection is performed once per measurement # Sample positions are returned in addition to paths # Inputs: # G- road network # z- m-length list containing position measurements as 2-length lists # t- list or array of measurement times # n- sample size # (vmean,vvar)- statistics of vehicle movement # ups- measurement noise variance # Outputs: # pp- sampled paths with node indices (list of sequences of node indices) # ppos- samped paths with node positions (list of list of node positions) # wp- sample weights (list of floats) # seg_idx- index (list of lists of integers) # ssamp- position along segment of each sampled path (m x n array of floats) m = len(z) seg_idx = [[0 for i in range(n)] for j in range(m)] Tp = roadnet.create_turn_tab(G) vmax = vmean+3*math.sqrt(vvar) logwt = numpy.zeros(n) validsamp = [1 for k in range(n)] psamp = [] ssamp = numpy.zeros((m,n)) # First measurement # Find all edges on which the target could lie [epos,eidx] = roadnet.find_start_paths(G,z[0],ups) # Sample edges pst = [] psamp = [] ppos = [] for i in range(n): # Draw path and distance along path [pidx_samp,ssamp[0,i]] = samp_start_path(z[0],epos,ups) psamp.append(eidx[pidx_samp]) if psamp[i][-2] not in pst: pst.append(psamp[i][-2]) if psamp[i][-1] not in pst: pst.append(psamp[i][-1]) seg_idx[0][i] = 0 # Second measurement # Select candidate paths (for both directions) [pe,ee] = roadnet.findnodes(G,z[1],ups) [cpath_pos,cpath_idx,turnpen] = roadnet.find_paths_by_IDs(G,Tp,pe,ee,pst,K) ncand = len(cpath_idx) pst = [] for i in range(n): ncandi = 0 cpath_idxi = [] cpath_posi = [] tpeni = [] isrev = [] s0 = [] # Find candidate paths matching this path sample for a in range(ncand): if cpath_idx[a][0]==psamp[i][-2] and cpath_idx[a][1]==psamp[i][-1]: cpath_posi.append(cpath_pos[a]) cpath_idxi.append(cpath_idx[a]) tpeni.append(turnpen[a]) isrev.append(0) s0.append(ssamp[0,i]) elif cpath_idx[a][1]==psamp[i][-2] and cpath_idx[a][0]==psamp[i][-1]: cpath_posi.append(cpath_pos[a]) cpath_idxi.append(cpath_idx[a]) tpeni.append(turnpen[a]) isrev.append(1) ell = roadnet.mynorm(cpath_pos[a][:,1]-cpath_pos[a][:,0]) s0.append(ell-ssamp[0,i]) # Draw a sample path if there are any matching candidates # print "cpath_idxi:", cpath_idxi if len(cpath_idxi)>0: [pidx_samp,seg_samp,ssamp[1,i],lwtj,validsamp[i]] = samp_path(z[1],t[1]-t[0],cpath_posi,tpeni,s0,ups,vmean,vvar) if validsamp[i]: psamp_new = cpath_idxi[pidx_samp][2:seg_samp+2] if isrev[pidx_samp]: psamp[i] = [psamp[i][1],psamp[i][0]] ell = roadnet.mynorm(cpath_pos[pidx_samp][:,1]-cpath_pos[pidx_samp][:,0]) ssamp[0,i] = ell-ssamp[0,i] psamp[i] = psamp[i]+psamp_new seg_idx[1][i] = seg_samp if psamp[i][-2] not in pst: pst.append(psamp[i][-2]) logwt[i] = lwtj # Set the weight to zero (effectively) if there are no matching candidates else: logwt[i] = -1e10 else: logwt[i] = -1e10 # Processing remaining measurements for j in range(2,m): # Select candidate paths [pe,ee] = roadnet.findnodes(G,z[j],ups) [cpath_pos,cpath_idx,turnpen] = roadnet.find_paths_by_IDs(G,Tp,pe,ee,pst,K) ncand = len(cpath_idx) pst = [] for i in range(n): if validsamp[i]: cpath_posi = [] cpath_idxi = [] tpeni = [] s0 = [] # Find candidate paths matching this path sample for a in range(ncand): if cpath_idx[a][0]==psamp[i][-2] and cpath_idx[a][1]==psamp[i][-1]: cpath_posi.append(cpath_pos[a]) cpath_idxi.append(cpath_idx[a]) tpeni.append(turnpen[a]) s0.append(ssamp[j-1,i]) # Draw a sample path if there are any matching candidates if len(cpath_idxi)>0: [pidx_samp,seg_samp,ssamp[j,i],lwtj,validsamp[i]] = samp_path(z[j],t[j]-t[j-1],cpath_posi,tpeni,s0,ups,vmean,vvar) if validsamp[i]: seg_idx[j][i] = seg_samp+len(psamp[i])-2 psamp_new = cpath_idxi[pidx_samp][2:seg_samp+2] psamp[i] = psamp[i]+psamp_new if psamp[i][-2] not in pst: pst.append(psamp[i][-2]) logwt[i] += lwtj # Set the weight to zero (effectively) if there are no matching candidates else: logwt[i] = -1e10 else: logwt[i] = -1e10 # Normalise weights maxwt = -1e20 for i in range(n): if logwt[i]>maxwt: maxwt = logwt[i] wtilde = numpy.zeros((n)) for i in range(n): wtilde[i] = math.exp(logwt[i]-maxwt) wt = wtilde/numpy.sum(wtilde) ppos = [] for i in range(n): nseg = len(psamp[i])-1 ppos_samp = numpy.zeros((2,nseg+1)) for j in range(nseg+1): pos = G.node[psamp[i][j]]["pos"] ppos_samp[0,j] = pos[0] ppos_samp[1,j] = pos[1] ppos.append(ppos_samp) return psamp, ppos, wt, seg_idx, ssamp
def calcpostprobs(G,z,t,n,K,vmean,vvar,ups,tpath): # [pp,sp,wp] = calcpostprobs(G,z,t,n,K,vmean,vvar,ups): # Improved approximation of the posterior # Path candidate selection is performed once per measurement # Inputs: # G- road network # z- m-length list containing position measurements as 2-length lists # t- list or array measurement times # n- sample size # K- no. candidate paths # (vmean,vvar)- statistics of vehicle movement # ups- measurement noise variance # Outputs: # pp- sampled paths (list of sequences of node indices) # sp- (estimated) distance of object along sampled paths (list of floats) # wp- sample weights (list of floats) m = len(z) Tp = roadnet.create_turn_tab(G) vmax = vmean+3*math.sqrt(vvar) logwt = numpy.zeros(n) psamp = [] ssamp = numpy.zeros((n,m)) # First measurement # Find all edges on which the target could lie [epos,eidx] = roadnet.find_start_paths(G,z[0],ups) # print "epos:",epos # print "eidx:",eidx # Sample edges (both directions are considered) pst = [] pst_rev = [] psamp = [] for i in range(n): # Draw edge and distance along edge [pidx_samp,ssamp[i][0]] = samp_start_path(z[0],epos,ups) psamp.append(eidx[pidx_samp]) if psamp[i][-2] not in pst: pst.append(psamp[i][-2]) if psamp[i][-1] not in pst_rev: pst_rev.append(psamp[i][-1]) # Second measurement # Select candidate paths (for both directions) [pe,ee] = roadnet.findnodes(G,z[1],ups) [cpath_pos,cpath_idx,turnpen] = roadnet.find_paths_by_IDs(G,Tp,pe,ee,pst,K,tpath) ncand = len(cpath_idx) [cpath_pos1,cpath_idx1,turnpen1] = roadnet.find_paths_by_IDs(G,Tp,pe,ee,pst_rev,K,tpath) ncand1 = len(cpath_idx1) pst = [] for i in range(n): ncandi = 0 cpath_idxi = [] cpath_posi = [] tpeni = [] isrev = [] s0 = [] # Find candidate paths matching this path sample for a in range(ncand): if cpath_idx[a][0]==psamp[i][-2] and cpath_idx[a][1]==psamp[i][-1]: cpath_posi.append(cpath_pos[a]) cpath_idxi.append(cpath_idx[a]) tpeni.append(turnpen[a]) isrev.append(0) s0.append(ssamp[i][0]) ncandi = ncandi+1 for a in range(ncand1): if cpath_idx1[a][0]==psamp[i][-1] and cpath_idx1[a][1]==psamp[i][-2]: cpath_posi.append(cpath_pos1[a]) cpath_idxi.append(cpath_idx1[a]) tpeni.append(turnpen1[a]) isrev.append(1) ell = roadnet.mynorm(cpath_pos1[a][:,1]-cpath_pos1[a][:,0]) s0.append(ell-ssamp[i][0]) # Draw a sample path if there are any matching candidates if len(cpath_idxi)>0: [pidx_samp,seg_idx,ssamp[i][1],lwtj,isvalid] = samp_path(z[1],t[1]-t[0],cpath_posi,tpeni,s0,ups,vmean,vvar) psamp_new = cpath_idxi[pidx_samp][2:seg_idx+2] if isrev[pidx_samp]: psamp[i] = [psamp[i][1],psamp[i][0]] psamp[i] = psamp[i]+psamp_new # print "psamp:",psamp[i] if psamp[i][-2] not in pst: pst.append(psamp[i][-2]) logwt[i] = lwtj # Set the weight to zero (effectively) if there are no matching candidates else: logwt[i] = -1e10 # Process the remaining measurements for j in range(2,m): # Select candidate paths [pe,ee] = roadnet.findnodes(G,z[j],ups) [cpath_pos,cpath_idx,turnpen] = roadnet.find_paths_by_IDs(G,Tp,pe,ee,pst,K,[]) ncand = len(cpath_idx) pst = [] for i in range(n): cpath_posi = [] cpath_idxi = [] tpeni = [] s0 = [] # Find candidate paths matching this path sample for a in range(ncand): if cpath_idx[a][0]==psamp[i][-2] and cpath_idx[a][1]==psamp[i][-1]: cpath_posi.append(cpath_pos[a]) cpath_idxi.append(cpath_idx[a]) tpeni.append(turnpen[a]) s0.append(ssamp[i][j-1]) # Draw a sample path if there are any matching candidates if len(cpath_idxi)>0: [pidx_samp,seg_idx,ssamp[i][j],lwtj,isvalid] =samp_path(z[j],t[j]-t[j-1],cpath_posi,tpeni,s0,ups,vmean,vvar) psamp_new = cpath_idxi[pidx_samp][2:seg_idx+2] psamp[i] = psamp[i]+psamp_new if psamp[i][-2] not in pst: pst.append(psamp[i][-2]) logwt[i] += lwtj # Set the weight to zero (effectively) if there are no matching candidates else: logwt[i] = -1e10 # Normalise weights maxwt = -1e20 for i in range(n): if logwt[i]>maxwt: maxwt = logwt[i] wtilde = numpy.zeros((n)) for i in range(n): wtilde[i] = math.exp(logwt[i]-maxwt) wt = wtilde/numpy.sum(wtilde) # Find the unique set of sampled paths npaths = 0 pout = [] seout = [] wout = numpy.zeros((n)) nout = 0 for i in range(n): isin = 0 if psamp[i] in pout: idx = pout.index(psamp[i]) seout[idx] += wt[i]*ssamp[i][-1] wout[idx] += wt[i] else: pout.append(psamp[i]) seout.append(wt[i]*ssamp[i][-1]) wout[nout] = wt[i] nout += 1 wout = wout[0:nout] seout = seout[0:nout] for i in range(nout): seout[i] /= wout[i] return pout, seout, wout