Exemple #1
0
class Motors:
    def __init__(self, config):
        roboclaw_vid = 0x03EB  # VID of Roboclaw motor driver in hex
        for port in comports():
            if port.vid == roboclaw_vid:
                self.rc = Roboclaw(port.device, 0x80)
                break
        else:
            raise IOError("Roboclaw motor driver not found")

        self.rc.Open()
        self.address = 0x80
        version = self.rc.ReadVersion(self.address)

        self.l_ticks_per_m = config['ticks_per_m'][
            'l']  #  number of left encoder ticks per m traveled
        self.r_ticks_per_m = config['ticks_per_m'][
            'r']  #  number of right encoder ticks per m traveled
        self.track_width = config[
            'track_width']  # width between the two tracks, in m

        self.mapping = config['mapping']
        if self.mapping not in ('rl', 'lr'):
            raise ValueError("Invalid motor mapping '{self.mapping}'")

        self.last_setpoint = None

        if version[0] == False:
            raise IOError("Roboclaw motor driver: GETVERSION failed")
        else:
            print(f"Roboclaw: {version[1]}")

    def drive(self, speed, angle):
        """
        Set the speed of the robot. They maintain this speed until stopped.
        speed: Forward speed in m/s
        angle: Clockwise angular rate in radians/s
        """

        max_angle = np.pi / 2
        angle = max(-max_angle, min(angle, max_angle))

        left_speed = int(
            (speed - self.track_width / 2 * angle) * self.l_ticks_per_m)
        right_speed = int(
            (speed + self.track_width / 2 * angle) * self.r_ticks_per_m)

        if self.last_setpoint != (left_speed, right_speed):
            self.last_setpoint = (left_speed, right_speed)
            if self.mapping == "rl":
                self.rc.SpeedM1M2(self.address, right_speed, left_speed)
            else:
                self.rc.SpeedM1M2(self.address, left_speed, right_speed)

    def stop(self):
        self.last_setpoint = None
        self.rc.ForwardM1(self.address, 0)
        self.rc.ForwardM2(self.address, 0)
Exemple #2
0
def init_rc():
    global rc
    global rc_address
    #  Initialise the roboclaw motorcontroller
    print("Initialising roboclaw driver...")
    from roboclaw import Roboclaw
    rc_address = 0x80
    rc = Roboclaw("/dev/roboclaw", 115200)
    rc.Open()
    # Get roboclaw version to test if is attached
    version = rc.ReadVersion(rc_address)
    if version[0] is False:
        print("Roboclaw get version failed")
        sys.exit()
    else:
        print(repr(version[1]))

    # Set motor controller variables to those required by K9
    rc.SetM1VelocityPID(rc_address, M1_P, M1_I, M1_D, M1_QPPS)
    rc.SetM2VelocityPID(rc_address, M2_P, M2_I, M2_D, M2_QPPS)
    rc.SetMainVoltages(rc_address,232,290) # 23.2V min, 29V max
    rc.SetPinFunctions(rc_address,2,0,0)
    # Zero the motor encoders
    rc.ResetEncoders(rc_address)

    # Print Motor PID Settings
    m1pid = rc.ReadM1VelocityPID(rc_address)
    m2pid = rc.ReadM2VelocityPID(rc_address)
    print("M1 P: " + str(m1pid[1]) + ", I:" + str(m1pid[2]) + ", D:" + str(m1pid[3]))
    print("M2 P: " + str(m2pid[1]) + ", I:" + str(m2pid[2]) + ", D:" + str(m2pid[3]))
    # Print Min and Max Main Battery Settings
    minmaxv = rc.ReadMinMaxMainVoltages(rc_address) # get min max volts
    print ("Min Main Battery: " + str(int(minmaxv[1])/10) + "V")
    print ("Max Main Battery: " + str(int(minmaxv[2])/10) + "V")
    # Print S3, S4 and S5 Modes
    S3mode=['Default','E-Stop (latching)','E-Stop','Voltage Clamp','Undefined']
    S4mode=['Disabled','E-Stop (latching)','E-Stop','Voltage Clamp','M1 Home']
    S5mode=['Disabled','E-Stop (latching)','E-Stop','Voltage Clamp','M2 Home']
    pinfunc = rc.ReadPinFunctions(rc_address)
    print ("S3 pin: " + S3mode[pinfunc[1]])
    print ("S4 pin: " + S4mode[pinfunc[2]])
    print ("S5 pin: " + S5mode[pinfunc[3]])
    print("Roboclaw motor controller initialised...")
class RoboclawWrapper(object):
    """Interface between the roboclaw motor drivers and the higher level rover code"""
    def __init__(self):
        rospy.loginfo("Initializing motor controllers")

        # initialize attributes
        self.rc = None
        self.err = [None] * 5
        self.address = []
        self.current_enc_vals = None
        self.corner_cmd_buffer = None
        self.drive_cmd_buffer = None

        self.roboclaw_mapping = rospy.get_param('~roboclaw_mapping')
        self.encoder_limits = {}
        self.establish_roboclaw_connections()
        self.stop_motors()  # don't move at start
        self.setup_encoders()

        # save settings to non-volatile (permanent) memory
        for address in self.address:
            self.rc.WriteNVM(address)

        for address in self.address:
            self.rc.ReadNVM(address)

        self.corner_max_vel = 1000
        # corner motor acceleration
        # Even though the actual method takes longs (2*32-1), roboclaw blog says 2**15 is 100%
        accel_max = 2**15 - 1
        accel_rate = rospy.get_param('/corner_acceleration_factor', 0.8)
        self.corner_accel = int(accel_max * accel_rate)
        self.roboclaw_overflow = 2**15 - 1
        # drive motor acceleration
        accel_max = 2**15 - 1
        accel_rate = rospy.get_param('/drive_acceleration_factor', 0.5)
        self.drive_accel = int(accel_max * accel_rate)
        self.velocity_timeout = rospy.Duration(
            rospy.get_param('/velocity_timeout', 2.0))
        self.time_last_cmd = rospy.Time.now()

        self.stop_motors()

        # set up publishers and subscribers
        self.corner_cmd_sub = rospy.Subscriber("/cmd_corner",
                                               CommandCorner,
                                               self.corner_cmd_cb,
                                               queue_size=1)
        self.drive_cmd_sub = rospy.Subscriber("/cmd_drive",
                                              CommandDrive,
                                              self.drive_cmd_cb,
                                              queue_size=1)
        self.enc_pub = rospy.Publisher("/encoder", JointState, queue_size=1)
        self.status_pub = rospy.Publisher("/status", Status, queue_size=1)

    def run(self):
        """Blocking loop which runs after initialization has completed"""
        rate = rospy.Rate(8)

        status = Status()

        counter = 0
        while not rospy.is_shutdown():

            # Check to see if there are commands in the buffer to send to the motor controller
            if self.drive_cmd_buffer:
                drive_fcn = self.send_drive_buffer_velocity
                drive_fcn(self.drive_cmd_buffer)
                self.drive_cmd_buffer = None

            if self.corner_cmd_buffer:
                self.send_corner_buffer(self.corner_cmd_buffer)
                self.corner_cmd_buffer = None

            # read from roboclaws and publish
            try:
                self.read_encoder_values()
                self.enc_pub.publish(self.current_enc_vals)
            except AssertionError as read_exc:
                rospy.logwarn("Failed to read encoder values")

            # Downsample the rate of less important data
            if (counter >= 5):
                status.battery = self.read_battery()
                status.temp = self.read_temperatures()
                status.current = self.read_currents()
                status.error_status = self.read_errors()
                counter = 0

            # stop the motors if we haven't received a command in a while
            now = rospy.Time.now()
            if now - self.time_last_cmd > self.velocity_timeout:
                # rather than a hard stop, send a ramped velocity command
                self.drive_cmd_buffer = CommandDrive()
                self.send_drive_buffer_velocity(self.drive_cmd_buffer)
                self.time_last_cmd = now  # so this doesn't get called all the time

            self.status_pub.publish(status)
            counter += 1
            rate.sleep()

    def establish_roboclaw_connections(self):
        """
        Attempt connecting to the roboclaws

        :raises Exception: when connection to one or more of the roboclaws is unsuccessful
        """
        self.rc = Roboclaw(
            rospy.get_param('/motor_controller/device', "/dev/serial0"),
            rospy.get_param('/motor_controller/baud_rate', 115200))
        self.rc.Open()

        address_raw = rospy.get_param('motor_controller/addresses')
        address_list = (address_raw.split(','))
        self.address = [None] * len(address_list)
        for i in range(len(address_list)):
            self.address[i] = int(address_list[i])

        # initialize connection status to successful
        all_connected = True
        for address in self.address:
            rospy.logdebug(
                "Attempting to talk to motor controller ''".format(address))
            version_response = self.rc.ReadVersion(address)
            connected = bool(version_response[0])
            if not connected:
                rospy.logerr(
                    "Unable to connect to roboclaw at '{}'".format(address))
                all_connected = False
            else:
                rospy.logdebug(
                    "Roboclaw version for address '{}': '{}'".format(
                        address, version_response[1]))
        if all_connected:
            rospy.loginfo(
                "Sucessfully connected to RoboClaw motor controllers")
        else:
            raise Exception(
                "Unable to establish connection to one or more of the Roboclaw motor controllers"
            )

    def setup_encoders(self):
        """Set up the encoders"""
        for motor_name, properties in self.roboclaw_mapping.iteritems():
            if "corner" in motor_name:
                enc_min, enc_max = self.read_encoder_limits(
                    properties["address"], properties["channel"])
                self.encoder_limits[motor_name] = (enc_min, enc_max)
            else:
                self.encoder_limits[motor_name] = (None, None)
                self.rc.ResetEncoders(properties["address"])

    def read_encoder_values(self):
        """Query roboclaws and update current motors status in encoder ticks"""
        enc_msg = JointState()
        enc_msg.header.stamp = rospy.Time.now()
        for motor_name, properties in self.roboclaw_mapping.iteritems():
            enc_msg.name.append(motor_name)
            position = self.read_encoder_position(properties["address"],
                                                  properties["channel"])
            velocity = self.read_encoder_velocity(properties["address"],
                                                  properties["channel"])
            current = self.read_encoder_current(properties["address"],
                                                properties["channel"])
            enc_msg.position.append(
                self.tick2position(position,
                                   self.encoder_limits[motor_name][0],
                                   self.encoder_limits[motor_name][1],
                                   properties['ticks_per_rev'],
                                   properties['gear_ratio']))
            enc_msg.velocity.append(
                self.qpps2velocity(velocity, properties['ticks_per_rev'],
                                   properties['gear_ratio']))
            enc_msg.effort.append(current)

        self.current_enc_vals = enc_msg

    def corner_cmd_cb(self, cmd):
        """
        Takes the corner command and stores it in the buffer to be sent
        on the next iteration of the run() loop.
        """

        rospy.logdebug("Corner command callback received: {}".format(cmd))
        self.time_last_cmd = rospy.Time.now()
        self.corner_cmd_buffer = cmd

    def send_corner_buffer(self, cmd):
        """
        Sends the corner command to the motor controller.
        """

        # convert position to tick
        encmin, encmax = self.encoder_limits["corner_left_front"]
        left_front_tick = self.position2tick(
            cmd.left_front_pos, encmin, encmax,
            self.roboclaw_mapping["corner_left_front"]["ticks_per_rev"],
            self.roboclaw_mapping["corner_left_front"]["gear_ratio"])
        encmin, encmax = self.encoder_limits["corner_left_back"]
        left_back_tick = self.position2tick(
            cmd.left_back_pos, encmin, encmax,
            self.roboclaw_mapping["corner_left_back"]["ticks_per_rev"],
            self.roboclaw_mapping["corner_left_back"]["gear_ratio"])
        encmin, encmax = self.encoder_limits["corner_right_back"]
        right_back_tick = self.position2tick(
            cmd.right_back_pos, encmin, encmax,
            self.roboclaw_mapping["corner_right_back"]["ticks_per_rev"],
            self.roboclaw_mapping["corner_right_back"]["gear_ratio"])
        encmin, encmax = self.encoder_limits["corner_right_front"]
        right_front_tick = self.position2tick(
            cmd.right_front_pos, encmin, encmax,
            self.roboclaw_mapping["corner_right_front"]["ticks_per_rev"],
            self.roboclaw_mapping["corner_right_front"]["gear_ratio"])

        self.send_position_cmd(
            self.roboclaw_mapping["corner_left_front"]["address"],
            self.roboclaw_mapping["corner_left_front"]["channel"],
            left_front_tick)
        self.send_position_cmd(
            self.roboclaw_mapping["corner_left_back"]["address"],
            self.roboclaw_mapping["corner_left_back"]["channel"],
            left_back_tick)
        self.send_position_cmd(
            self.roboclaw_mapping["corner_right_back"]["address"],
            self.roboclaw_mapping["corner_right_back"]["channel"],
            right_back_tick)
        self.send_position_cmd(
            self.roboclaw_mapping["corner_right_front"]["address"],
            self.roboclaw_mapping["corner_right_front"]["channel"],
            right_front_tick)

    def drive_cmd_cb(self, cmd):
        """
        Takes the drive command and stores it in the buffer to be sent
        on the next iteration of the run() loop.
        """

        rospy.logdebug("Drive command callback received: {}".format(cmd))
        self.drive_cmd_buffer = cmd
        self.time_last_cmd = rospy.Time.now()

    def send_drive_buffer_velocity(self, cmd):
        """
        Sends the drive command to the motor controller, closed loop velocity commands
        """
        props = self.roboclaw_mapping["drive_left_front"]
        vel_cmd = self.velocity2qpps(cmd.left_front_vel,
                                     props["ticks_per_rev"],
                                     props["gear_ratio"])
        self.send_velocity_cmd(props["address"], props["channel"], vel_cmd)

        props = self.roboclaw_mapping["drive_left_middle"]
        vel_cmd = self.velocity2qpps(cmd.left_middle_vel,
                                     props["ticks_per_rev"],
                                     props["gear_ratio"])
        self.send_velocity_cmd(props["address"], props["channel"], vel_cmd)

        props = self.roboclaw_mapping["drive_left_back"]
        vel_cmd = self.velocity2qpps(cmd.left_back_vel, props["ticks_per_rev"],
                                     props["gear_ratio"])
        self.send_velocity_cmd(props["address"], props["channel"], vel_cmd)

        props = self.roboclaw_mapping["drive_right_back"]
        vel_cmd = self.velocity2qpps(cmd.right_back_vel,
                                     props["ticks_per_rev"],
                                     props["gear_ratio"])
        self.send_velocity_cmd(props["address"], props["channel"], vel_cmd)

        props = self.roboclaw_mapping["drive_right_middle"]
        vel_cmd = self.velocity2qpps(cmd.right_middle_vel,
                                     props["ticks_per_rev"],
                                     props["gear_ratio"])
        self.send_velocity_cmd(props["address"], props["channel"], vel_cmd)

        props = self.roboclaw_mapping["drive_right_front"]
        vel_cmd = self.velocity2qpps(cmd.right_front_vel,
                                     props["ticks_per_rev"],
                                     props["gear_ratio"])
        self.send_velocity_cmd(props["address"], props["channel"], vel_cmd)

    def send_position_cmd(self, address, channel, target_tick):
        """
        Wrapper around one of the send position commands

        :param address:
        :param channel:
        :param target_tick: int
        """
        cmd_args = [
            self.corner_accel, self.corner_max_vel, self.corner_accel,
            target_tick, 1
        ]
        if channel == "M1":
            return self.rc.SpeedAccelDeccelPositionM1(address, *cmd_args)
        elif channel == "M2":
            return self.rc.SpeedAccelDeccelPositionM2(address, *cmd_args)
        else:
            raise AttributeError(
                "Received unknown channel '{}'. Expected M1 or M2".format(
                    channel))

    def read_encoder_position(self, address, channel):
        """Wrapper around self.rc.ReadEncM1 and self.rcReadEncM2 to simplify code"""
        if channel == "M1":
            val = self.rc.ReadEncM1(address)
        elif channel == "M2":
            val = self.rc.ReadEncM2(address)
        else:
            raise AttributeError(
                "Received unknown channel '{}'. Expected M1 or M2".format(
                    channel))

        assert val[0] == 1
        return val[1]

    def read_encoder_limits(self, address, channel):
        """Wrapper around self.rc.ReadPositionPID and returns subset of the data

        :return: (enc_min, enc_max)
        """
        if channel == "M1":
            result = self.rc.ReadM1PositionPID(address)
        elif channel == "M2":
            result = self.rc.ReadM2PositionPID(address)
        else:
            raise AttributeError(
                "Received unknown channel '{}'. Expected M1 or M2".format(
                    channel))

        assert result[0] == 1
        return (result[-2], result[-1])

    def send_velocity_cmd(self, address, channel, target_qpps):
        """
        Wrapper around one of the send velocity commands

        :param address:
        :param channel:
        :param target_qpps: int
        """
        # clip values
        target_qpps = max(-self.roboclaw_overflow,
                          min(self.roboclaw_overflow, target_qpps))
        if channel == "M1":
            return self.rc.SpeedAccelM1(address, self.drive_accel, target_qpps)
        elif channel == "M2":
            return self.rc.SpeedAccelM2(address, self.drive_accel, target_qpps)
        else:
            raise AttributeError(
                "Received unknown channel '{}'. Expected M1 or M2".format(
                    channel))

    def read_encoder_velocity(self, address, channel):
        """Wrapper around self.rc.ReadSpeedM1 and self.rcReadSpeedM2 to simplify code"""
        if channel == "M1":
            val = self.rc.ReadSpeedM1(address)
        elif channel == "M2":
            val = self.rc.ReadSpeedM2(address)
        else:
            raise AttributeError(
                "Received unknown channel '{}'. Expected M1 or M2".format(
                    channel))

        assert val[0] == 1
        return val[1]

    def read_encoder_current(self, address, channel):
        """Wrapper around self.rc.ReadCurrents to simplify code"""
        if channel == "M1":
            return self.rc.ReadCurrents(address)[0]
        elif channel == "M2":
            return self.rc.ReadCurrents(address)[1]
        else:
            raise AttributeError(
                "Received unknown channel '{}'. Expected M1 or M2".format(
                    channel))

    def tick2position(self, tick, enc_min, enc_max, ticks_per_rev, gear_ratio):
        """
        Convert the absolute position from ticks to radian relative to the middle position

        :param tick:
        :param enc_min:
        :param enc_max:
        :param ticks_per_rev:
        :return:
        """
        ticks_per_rad = ticks_per_rev / (2 * math.pi)
        if enc_min is None or enc_max is None:
            return tick / ticks_per_rad
        mid = enc_min + (enc_max - enc_min) / 2

        return (tick - mid) / ticks_per_rad * gear_ratio

    def position2tick(self, position, enc_min, enc_max, ticks_per_rev,
                      gear_ratio):
        """
        Convert the absolute position from radian relative to the middle position to ticks

                Clip values that are outside the range [enc_min, enc_max]

        :param position:
        :param enc_min:
        :param enc_max:
        :param ticks_per_rev:
        :return:
        """
        ticks_per_rad = ticks_per_rev / (2 * math.pi)
        if enc_min is None or enc_max is None:
            return position * ticks_per_rad
        mid = enc_min + (enc_max - enc_min) / 2
        tick = int(mid + position * ticks_per_rad / gear_ratio)

        return max(enc_min, min(enc_max, tick))

    def qpps2velocity(self, qpps, ticks_per_rev, gear_ratio):
        """
        Convert the given quadrature pulses per second to radian/s

        :param qpps: int
        :param ticks_per_rev:
        :param gear_ratio:
        :return:
        """
        return qpps * 2 * math.pi / (gear_ratio * ticks_per_rev)

    def velocity2qpps(self, velocity, ticks_per_rev, gear_ratio):
        """
        Convert the given velocity to quadrature pulses per second

        :param velocity: rad/s
        :param ticks_per_rev:
        :param gear_ratio:
        :return: int
        """
        return int(velocity * gear_ratio * ticks_per_rev / (2 * math.pi))

    def read_battery(self):
        """Read battery voltage from one of the roboclaws as a proxy for all roboclaws"""
        # roboclaw reports value in 10ths of a Volt
        return self.rc.ReadMainBatteryVoltage(self.address[0])[1] / 10.0

    def read_temperatures(self):
        temp = [None] * 5
        for i in range(5):
            # reported by roboclaw in 10ths of a Celsius
            temp[i] = self.rc.ReadTemp(self.address[i])[1] / 10.0

        return temp

    def read_currents(self):
        currents = [None] * 10
        for i in range(5):
            currs = self.rc.ReadCurrents(self.address[i])
            # reported by roboclaw in 10ths of an Ampere
            currents[2 * i] = currs[1] / 100.0
            currents[(2 * i) + 1] = currs[2] / 100.0

        return currents

    def stop_motors(self):
        """Stops all motors on Rover"""
        for i in range(5):
            self.rc.ForwardM1(self.address[i], 0)
            self.rc.ForwardM2(self.address[i], 0)

    def read_errors(self):
        """Checks error status of each motor controller, returns 0 if no errors reported"""
        err = [0] * 5
        for i in range(len(self.address)):
            err[i] = self.rc.ReadError(self.address[i])[1]
            if err[i] != 0:
                rospy.logerr(
                    "Motor controller '{}' reported error code {}".format(
                        self.address[i], err[i]))

        return err
Exemple #4
0
from roboclaw import Roboclaw
import time

rc = Roboclaw("/dev/ttyS0", 115200)
i = rc.Open()

ver = rc.ReadVersion(0x80)
print(ver)
ver = rc.ReadVersion(0x81)
print(ver)
ver = rc.ReadVersion(0x82)
print(ver)
rc.ForwardM1(0x81, 100)
time.sleep(3)
rc.ForwardM1(0x81, 0)
Exemple #5
0
class MotorControllers(object):
    '''
	Motor class contains the methods necessary to send commands to the motor controllers

	for the corner and drive motors. There are many other ways of commanding the motors

	from the RoboClaw, we suggest trying to write your own Closed loop feedback method for

	the drive motors!

	'''
    def __init__(self):
        ## MAKE SURE TO FIX CONFIG.JSON WHEN PORTED TO THE ROVER!
        #self.rc = Roboclaw( config['CONTROLLER_CONFIG']['device'],
        #					config['CONTROLLER_CONFIG']['baud_rate']
        #					)
        rospy.loginfo("Initializing motor controllers")
        #self.rc = Roboclaw( rospy.get_param('motor_controller_device', "/dev/serial0"),
        #					rospy.get_param('baud_rate', 115200))
        sdev = "/dev/ttyAMA0"
        sdev = "/dev/serial0"

        self.rc = Roboclaw(sdev, 115200)
        self.rc.Open()
        self.accel = [0] * 10
        self.qpps = [None] * 10
        self.err = [None] * 5
        # PSW
        address_raw = "128,129,130,131,132"
        #address_raw = rospy.get_param('motor_controller_addresses')
        address_list = (address_raw.split(','))
        self.address = [None] * len(address_list)
        for i in range(len(address_list)):
            self.address[i] = int(address_list[i])

        version = 1
        for address in self.address:
            print("Attempting to talk to motor controller", address)
            version = version & self.rc.ReadVersion(address)[0]
            print version
        if version != 0:
            print "[Motor__init__] Sucessfully connected to RoboClaw motor controllers"
        else:
            raise Exception(
                "Unable to establish connection to Roboclaw motor controllers")
        self.killMotors()
        self.enc_min = []
        self.enc_max = []
        for address in self.address:
            #self.rc.SetMainVoltages(address, rospy.get_param('battery_low', 11)*10), rospy.get_param('battery_high', 18)*10))

            if address == 131 or address == 132:
                #self.rc.SetM1MaxCurrent(address, int(config['MOTOR_CONFIG']['max_corner_current']*100))
                #self.rc.SetM2MaxCurrent(address, int(config['MOTOR_CONFIG']['max_corner_current']*100))

                self.enc_min.append(self.rc.ReadM1PositionPID(address)[-2])
                self.enc_min.append(self.rc.ReadM2PositionPID(address)[-2])
                self.enc_max.append(self.rc.ReadM1PositionPID(address)[-1])
                self.enc_max.append(self.rc.ReadM2PositionPID(address)[-1])

            else:
                #self.rc.SetM1MaxCurrent(address, int(config['MOTOR_CONFIG']['max_drive_current']*100))
                #self.rc.SetM2MaxCurrent(address, int(config['MOTOR_CONFIG']['max_drive_current']*100))
                self.rc.ResetEncoders(address)

        rospy.set_param('enc_min', str(self.enc_min)[1:-1])
        rospy.set_param('enc_max', str(self.enc_max)[1:-1])

        for address in self.address:
            self.rc.WriteNVM(address)

        for address in self.address:
            self.rc.ReadNVM(address)
        #'''
        voltage = self.rc.ReadMainBatteryVoltage(0x80)[1] / 10.0
        lvolts = rospy.get_param('low_voltage', 11)
        lvolts = rospy.get_param('low_voltage', 9)
        if voltage >= lvolts:
            print "[Motor__init__] Voltage is safe at: ",
            print voltage,
            print "V"
        else:
            print "[Motor__init__] Voltage is unsafe at: ", voltage, "V ( low = ", lvolts, ")"
            raise Exception("Unsafe Voltage of" + voltage + " Volts")
        #'''
        i = 0

        for address in self.address:
            self.qpps[i] = self.rc.ReadM1VelocityPID(address)[4]
            self.accel[i] = int(self.qpps[i] * 2)
            self.qpps[i + 1] = self.rc.ReadM2VelocityPID(address)[4]
            self.accel[i + 1] = int(self.qpps[i] * 2)
            i += 2
        accel_max = 655359
        accel_rate = 0.5
        self.accel_pos = int((accel_max / 2) + accel_max * accel_rate)
        self.accel_neg = int((accel_max / 2) - accel_max * accel_rate)
        self.errorCheck()
        mids = [None] * 4
        self.enc = [None] * 4
        for i in range(4):
            mids[i] = (self.enc_max[i] + self.enc_min[i]) / 2
        #self.cornerToPosition(mids)
        time.sleep(2)
        self.killMotors()

    def cornerToPosition(self, tick):
        '''
		Method to send position commands to the corner motor

		:param list tick: A list of ticks for each of the corner motors to
		move to, if tick[i] is 0 it instead stops that motor from moving

		'''
        speed, accel = 1000, 2000  #These values could potentially need tuning still
        for i in range(4):
            index = int(math.ceil((i + 1) / 2.0) + 2)

            if tick[i] != -1:
                if (i % 2):
                    self.rc.SpeedAccelDeccelPositionM2(self.address[index],
                                                       accel, speed, accel,
                                                       tick[i], 1)
                else:
                    self.rc.SpeedAccelDeccelPositionM1(self.address[index],
                                                       accel, speed, accel,
                                                       tick[i], 1)
            else:
                if not (i % 2): self.rc.ForwardM1(self.address[index], 0)
                else: self.rc.ForwardM2(self.address[index], 0)

    def sendMotorDuty(self, motorID, speed):
        '''
		Wrapper method for an easier interface to control the drive motors,

		sends open-loop commands to the motors

		:param int motorID: number that corresponds to each physical motor
		:param int speed: Speed for each motor, range from 0-127

		'''
        #speed = speed/100.0
        #speed *= 0.5
        addr = self.address[int(motorID / 2)]
        if speed > 0:
            if not motorID % 2: command = self.rc.ForwardM1
            else: command = self.rc.ForwardM2
        else:
            if not motorID % 2: command = self.rc.BackwardM1
            else: command = self.rc.BackwardM2

        speed = abs(int(speed * 127))

        return command(addr, speed)

    def sendSignedDutyAccel(self, motorID, speed):
        addr = self.address[int(motorID / 2)]

        if speed > 0: accel = self.accel_pos
        else: accel = self.accel_neg

        if not motorID % 2: command = self.rc.DutyAccelM1
        else: command = self.rc.DutyAccelM2

        speed = int(32767 * speed / 100.0)
        return command(addr, accel, speed)

    def getCornerEnc(self):
        enc = []
        for i in range(4):
            index = int(math.ceil((i + 1) / 2.0) + 2)
            if not (i % 2):
                enc.append(self.rc.ReadEncM1(self.address[index])[1])
            else:
                enc.append(self.rc.ReadEncM2(self.address[index])[1])
        self.enc = enc
        return enc

    @staticmethod
    def tick2deg(tick, e_min, e_max):
        '''
		Converts a tick to physical degrees

		:param int tick : Current encoder tick
		:param int e_min: The minimum encoder value based on physical stop
		:param int e_max: The maximum encoder value based on physical stop

		'''
        return (tick - (e_max + e_min) / 2.0) * (90.0 / (e_max - e_min))

    def getCornerEncAngle(self):
        if self.enc[0] == None:
            return -1
        deg = [None] * 4

        for i in range(4):
            deg[i] = int(
                self.tick2deg(self.enc[i], self.enc_min[i], self.enc_max[i]))

        return deg

    def getDriveEnc(self):
        enc = [None] * 6
        for i in range(6):
            if not (i % 2):
                enc[i] = self.rc.ReadEncM1(self.address[int(math.ceil(i /
                                                                      2))])[1]
            else:
                enc[i] = self.rc.ReadEncM2(self.address[int(math.ceil(i /
                                                                      2))])[1]
        return enc

    def getBattery(self):
        return self.rc.ReadMainBatteryVoltage(self.address[0])[1]

    def getTemp(self):
        temp = [None] * 5
        for i in range(5):
            temp[i] = self.rc.ReadTemp(self.address[i])[1]
        return temp

    def getCurrents(self):
        currents = [None] * 10
        for i in range(5):
            currs = self.rc.ReadCurrents(self.address[i])
            currents[2 * i] = currs[1]
            currents[(2 * i) + 1] = currs[2]
        return currents

    def getErrors(self):
        return self.err

    def killMotors(self):
        '''
		Stops all motors on Rover
		'''
        for i in range(5):
            self.rc.ForwardM1(self.address[i], 0)
            self.rc.ForwardM2(self.address[i], 0)

    def errorCheck(self):
        '''
		Checks error status of each motor controller, returns 0 if any errors occur
		'''

        for i in range(len(self.address)):
            self.err[i] = self.rc.ReadError(self.address[i])[1]
        for error in self.err:
            if error:
                self.killMotors()
                #self.writeError()
                rospy.loginfo("Motor controller Error", error)
        return 1

    def writeError(self):
        '''
		Writes the list of errors to a text file for later examination
		'''

        f = open('errorLog.txt', 'a')
        errors = ','.join(str(e) for e in self.err)
        f.write('\n' + 'Errors: ' + '[' + errors + ']' + ' at: ' +
                str(datetime.datetime.now()))
        f.close()
Exemple #6
0
#
# Initialise PID values on motor controller
#
import time  # enable sleep function
from roboclaw import Roboclaw  # enabling Roboclaw
rc = Roboclaw("/dev/roboclaw", 115200)
rc.Open()
rc_address = 0x80
version = rc.ReadVersion(rc_address)
if version[0] == False:
    print "Roboclaw get version failed, exiting..."
    sys.exit()
else:
    print repr(version[1])
    rc.SetM1VelocityPID(rc_address, 3000, 300, 0, 708)
    rc.SetM2VelocityPID(rc_address, 3000, 300, 0, 720)
    WriteNVM(self, address)
    time.sleep(30)
    print "Motor controller PID values intialised, exiting..."
Exemple #7
0
        print(format(enc2[2], '02x'))
    else:
        print("failed ")
    print("Speed1:")
    if speed1[0]:
        print(speed1[1])
    else:
        print("failed")
    print("Speed2:")
    if speed2[0]:
        print(speed2[1])
    else:
        print("failed ")


version = rc.ReadVersion()
if version[0] == False:
    print("GETVERSION Failed")
else:
    print(repr(version[1]))

while 1:
    rc.speed_accel_m1(12000, 12000)
    rc.speed_accel_m2(12000, -12000)
    for i in range(0, 200):
        displayspeed()
        time.sleep(0.01)

    rc.speed_accel_m1(12000, -12000)
    rc.speed_accel_m2(12000, 12000)
    for i in range(0, 200):
Exemple #8
0
def hello_world():
    rc = Roboclaw("/dev/ttyACM0", 115200)
    rc.Open()
    ver = rc.ReadVersion(0x80)
    return "Flask successfully communicated with " + ver[1]
Exemple #9
0
class RoboclawWrapper(object):
    """Interface between the roboclaw motor drivers and the higher level rover code"""

    def __init__(self):
        rospy.loginfo( "Initializing motor controllers")

        # initialize attributes
        self.rc = None
        self.err = [None] * 5
        self.address = []
        self.current_enc_vals = None
        self.mutex = False

        self.roboclaw_mapping = rospy.get_param('~roboclaw_mapping')
        self.encoder_limits = {}
        self.establish_roboclaw_connections()
        self.killMotors()  # don't move at start
        self.setup_encoders()

        # save settings to non-volatile (permanent) memory
        for address in self.address:
            self.rc.WriteNVM(address)

        for address in self.address:
            self.rc.ReadNVM(address)

        self.corner_max_vel = 1000
        self.corner_accel = 2000
        self.roboclaw_overflow = 2**15-1
        accel_max = 655359
        accel_rate = 0.5
        self.accel_pos = int((accel_max /2) + accel_max * accel_rate)
        self.accel_neg = int((accel_max /2) - accel_max * accel_rate)
        self.errorCheck()

        self.killMotors()

        # set up publishers and subscribers
        self.corner_cmd_sub = rospy.Subscriber("/cmd_corner", CommandCorner, self.corner_cmd_cb, queue_size=1)
        self.drive_cmd_sub = rospy.Subscriber("/cmd_drive", CommandDrive, self.drive_cmd_cb, queue_size=1)
        self.enc_pub = rospy.Publisher("/encoder", JointState, queue_size=1)
        self.status_pub = rospy.Publisher("/status", Status, queue_size=1)

    def run(self):
        """Blocking loop which runs after initialization has completed"""
        rate = rospy.Rate(5)
        mutex_rate = rospy.Rate(10)

        status = Status()

        counter = 0
        while not rospy.is_shutdown():

            while self.mutex and not rospy.is_shutdown():
                mutex_rate.sleep()
            self.mutex = True

            # read from roboclaws and publish
            try:
                self.read_encoder_values()
                self.enc_pub.publish(self.current_enc_vals)
            except AssertionError as read_exc:
                rospy.logwarn( "Failed to read encoder values")

            if (counter >= 10):
                status.battery = self.getBattery()
                status.temp = self.getTemp()
                status.current = self.getCurrents()
                status.error_status = self.getErrors()
                self.status_pub.publish(status)
                counter = 0

            self.mutex = False
            counter += 1
            rate.sleep()

    def establish_roboclaw_connections(self):
        """
        Attempt connecting to the roboclaws

        :raises Exception: when connection to one or more of the roboclaws is unsuccessful
        """
        self.rc = Roboclaw(rospy.get_param('/motor_controller/device', "/dev/serial0"),
                           rospy.get_param('/motor_controller/baud_rate', 115200))
        self.rc.Open()

        address_raw = rospy.get_param('motor_controller/addresses')
        address_list = (address_raw.split(','))
        self.address = [None]*len(address_list)
        for i in range(len(address_list)):
            self.address[i] = int(address_list[i])

        # initialize connection status to successful
        all_connected = True
        for address in self.address:
            rospy.logdebug("Attempting to talk to motor controller ''".format(address))
            version_response = self.rc.ReadVersion(address)
            connected = bool(version_response[0])
            if not connected:
                rospy.logerr("Unable to connect to roboclaw at '{}'".format(address))
                all_connected = False
            else:
                rospy.logdebug("Roboclaw version for address '{}': '{}'".format(address, version_response[1]))
        if all_connected:
            rospy.loginfo("Sucessfully connected to RoboClaw motor controllers")
        else:
            raise Exception("Unable to establish connection to one or more of the Roboclaw motor controllers")

    def setup_encoders(self):
        """Set up the encoders"""
        for motor_name, properties in self.roboclaw_mapping.iteritems():
            if "corner" in motor_name:
                enc_min, enc_max = self.read_encoder_limits(properties["address"], properties["channel"])
                self.encoder_limits[motor_name] = (enc_min, enc_max)
            else:
                self.encoder_limits[motor_name] = (None, None)
                self.rc.ResetEncoders(properties["address"])

    def read_encoder_values(self):
        """Query roboclaws and update current motors status in encoder ticks"""
        enc_msg = JointState()
        enc_msg.header.stamp = rospy.Time.now()
        for motor_name, properties in self.roboclaw_mapping.iteritems():
            enc_msg.name.append(motor_name)
            position = self.read_encoder_position(properties["address"], properties["channel"])
            velocity = self.read_encoder_velocity(properties["address"], properties["channel"])
            current = self.read_encoder_current(properties["address"], properties["channel"])
            enc_msg.position.append(self.tick2position(position,
                                                       self.encoder_limits[motor_name][0],
                                                       self.encoder_limits[motor_name][1],
                                                       properties['ticks_per_rev'],
                                                       properties['gear_ratio']))
            enc_msg.velocity.append(self.qpps2velocity(velocity,
                                                       properties['ticks_per_rev'],
                                                       properties['gear_ratio']))
            enc_msg.effort.append(current)

        self.current_enc_vals = enc_msg

    def corner_cmd_cb(self, cmd):
        r = rospy.Rate(10)
        rospy.logdebug("Corner command callback received: {}".format(cmd))

        while self.mutex and not rospy.is_shutdown():
            r.sleep()

        self.mutex = True

        # convert position to tick
        encmin, encmax = self.encoder_limits["corner_left_front"]
        left_front_tick = self.position2tick(cmd.left_front_pos, encmin, encmax,
                                             self.roboclaw_mapping["corner_left_front"]["ticks_per_rev"],
                                             self.roboclaw_mapping["corner_left_front"]["gear_ratio"])
        encmin, encmax = self.encoder_limits["corner_left_back"]
        left_back_tick = self.position2tick(cmd.left_back_pos, encmin, encmax,
                                            self.roboclaw_mapping["corner_left_back"]["ticks_per_rev"],
                                            self.roboclaw_mapping["corner_left_back"]["gear_ratio"])
        encmin, encmax = self.encoder_limits["corner_right_back"]
        right_back_tick = self.position2tick(cmd.right_back_pos, encmin, encmax,
                                             self.roboclaw_mapping["corner_right_back"]["ticks_per_rev"],
                                             self.roboclaw_mapping["corner_right_back"]["gear_ratio"])
        encmin, encmax = self.encoder_limits["corner_right_front"]
        right_front_tick = self.position2tick(cmd.right_front_pos, encmin, encmax,
                                              self.roboclaw_mapping["corner_right_front"]["ticks_per_rev"],
                                              self.roboclaw_mapping["corner_right_front"]["gear_ratio"])

        self.send_position_cmd(self.roboclaw_mapping["corner_left_front"]["address"],
                               self.roboclaw_mapping["corner_left_front"]["channel"],
                               left_front_tick)
        self.send_position_cmd(self.roboclaw_mapping["corner_left_back"]["address"],
                               self.roboclaw_mapping["corner_left_back"]["channel"],
                               left_back_tick)
        self.send_position_cmd(self.roboclaw_mapping["corner_right_back"]["address"],
                               self.roboclaw_mapping["corner_right_back"]["channel"],
                               right_back_tick)
        self.send_position_cmd(self.roboclaw_mapping["corner_right_front"]["address"],
                               self.roboclaw_mapping["corner_right_front"]["channel"],
                               right_front_tick)
        self.mutex = False

    def drive_cmd_cb(self, cmd):
        r = rospy.Rate(10)
        rospy.logdebug("Drive command callback received: {}".format(cmd))

        while self.mutex and not rospy.is_shutdown():
            r.sleep()

        self.mutex = True

        props = self.roboclaw_mapping["drive_left_front"]
        vel_cmd = self.velocity2qpps(cmd.left_front_vel, props["ticks_per_rev"], props["gear_ratio"])
        self.send_velocity_cmd(props["address"], props["channel"], vel_cmd)

        props = self.roboclaw_mapping["drive_left_middle"]
        vel_cmd = self.velocity2qpps(cmd.left_middle_vel, props["ticks_per_rev"], props["gear_ratio"])
        self.send_velocity_cmd(props["address"], props["channel"], vel_cmd)

        props = self.roboclaw_mapping["drive_left_back"]
        vel_cmd = self.velocity2qpps(cmd.left_back_vel, props["ticks_per_rev"], props["gear_ratio"])
        self.send_velocity_cmd(props["address"], props["channel"], vel_cmd)

        props = self.roboclaw_mapping["drive_right_back"]
        vel_cmd = self.velocity2qpps(cmd.right_back_vel, props["ticks_per_rev"], props["gear_ratio"])
        self.send_velocity_cmd(props["address"], props["channel"], vel_cmd)

        props = self.roboclaw_mapping["drive_right_middle"]
        vel_cmd = self.velocity2qpps(cmd.right_middle_vel, props["ticks_per_rev"], props["gear_ratio"])
        self.send_velocity_cmd(props["address"], props["channel"], vel_cmd)

        props = self.roboclaw_mapping["drive_right_front"]
        vel_cmd = self.velocity2qpps(cmd.right_front_vel, props["ticks_per_rev"], props["gear_ratio"])
        self.send_velocity_cmd(props["address"], props["channel"], vel_cmd)

        self.mutex = False

    def send_position_cmd(self, address, channel, target_tick):
        """
        Wrapper around one of the send position commands

        :param address:
        :param channel:
        :param target_tick: int
        """
        cmd_args = [self.corner_accel, self.corner_max_vel, self.corner_accel, target_tick, 1]
        if channel == "M1":
            return self.rc.SpeedAccelDeccelPositionM1(address, *cmd_args)
        elif channel == "M2":
            return self.rc.SpeedAccelDeccelPositionM2(address, *cmd_args)
        else:
            raise AttributeError("Received unknown channel '{}'. Expected M1 or M2".format(channel))

    def read_encoder_position(self, address, channel):
        """Wrapper around self.rc.ReadEncM1 and self.rcReadEncM2 to simplify code"""
        if channel == "M1":
            val = self.rc.ReadEncM1(address)
        elif channel == "M2":
            val = self.rc.ReadEncM2(address)
        else:
            raise AttributeError("Received unknown channel '{}'. Expected M1 or M2".format(channel))

        assert val[0] == 1
        return val[1]


    def read_encoder_limits(self, address, channel):
        """Wrapper around self.rc.ReadPositionPID and returns subset of the data

        :return: (enc_min, enc_max)
        """
        if channel == "M1":
            result = self.rc.ReadM1PositionPID(address)
        elif channel == "M2":
            result = self.rc.ReadM2PositionPID(address)
        else:
            raise AttributeError("Received unknown channel '{}'. Expected M1 or M2".format(channel))

        assert result[0] == 1
        return (result[-2], result[-1])

    def send_velocity_cmd(self, address, channel, target_qpps):
        """
        Wrapper around one of the send velocity commands

        :param address:
        :param channel:
        :param target_qpps: int
        """
        # clip values
        target_qpps = max(-self.roboclaw_overflow, min(self.roboclaw_overflow, target_qpps))
        accel = self.accel_pos
        if target_qpps < 0:
            accel = self.accel_neg
        if channel == "M1":
            return self.rc.DutyAccelM1(address, accel, target_qpps)
        elif channel == "M2":
            return self.rc.DutyAccelM2(address, accel, target_qpps)
        else:
            raise AttributeError("Received unknown channel '{}'. Expected M1 or M2".format(channel))

    def read_encoder_velocity(self, address, channel):
        """Wrapper around self.rc.ReadSpeedM1 and self.rcReadSpeedM2 to simplify code"""
        if channel == "M1":
            val = self.rc.ReadSpeedM1(address)
        elif channel == "M2":
            val = self.rc.ReadSpeedM2(address)
        else:
            raise AttributeError("Received unknown channel '{}'. Expected M1 or M2".format(channel))

        assert val[0] == 1
        return val[1]

    def read_encoder_current(self, address, channel):
        """Wrapper around self.rc.ReadCurrents to simplify code"""
        if channel == "M1":
            return self.rc.ReadCurrents(address)[0]
        elif channel == "M2":
            return self.rc.ReadCurrents(address)[1]
        else:
            raise AttributeError("Received unknown channel '{}'. Expected M1 or M2".format(channel))

    def tick2position(self, tick, enc_min, enc_max, ticks_per_rev, gear_ratio):
        """
        Convert the absolute position from ticks to radian relative to the middle position

        :param tick:
        :param enc_min:
        :param enc_max:
        :param ticks_per_rev:
        :return:
        """
        ticks_per_rad = ticks_per_rev / (2 * math.pi)
        if enc_min is None or enc_max is None:
            return tick / ticks_per_rad
        mid = enc_min + (enc_max - enc_min) / 2

        # positive values correspond to the wheel turning left (z-axis points up)
        return -(tick - mid) / ticks_per_rad * gear_ratio

    def position2tick(self, position, enc_min, enc_max, ticks_per_rev, gear_ratio):
        """
        Convert the absolute position from radian relative to the middle position to ticks

                Clip values that are outside the range [enc_min, enc_max]

        :param position:
        :param enc_min:
        :param enc_max:
        :param ticks_per_rev:
        :return:
        """
        # positive values correspond to the wheel turning left (z-axis points up)
        position *= -1
        ticks_per_rad = ticks_per_rev / (2 * math.pi)
        if enc_min is None or enc_max is None:
            return position * ticks_per_rad
        mid = enc_min + (enc_max - enc_min) / 2
        tick = int(mid + position * ticks_per_rad / gear_ratio)

        return max(enc_min, min(enc_max, tick))

    def qpps2velocity(self, qpps, ticks_per_rev, gear_ratio):
        """
        Convert the given quadrature pulses per second to radian/s

        :param qpps: int
        :param ticks_per_rev:
        :param gear_ratio:
        :return:
        """
        return qpps / (2 * math.pi * gear_ratio * ticks_per_rev)

    def velocity2qpps(self, velocity, ticks_per_rev, gear_ratio):
        """
        Convert the given velocity to quadrature pulses per second

        :param velocity: rad/s
        :param ticks_per_rev:
        :param gear_ratio:
        :return: int
        """
        return int(velocity * 2 * math.pi * gear_ratio * ticks_per_rev)

    def getBattery(self):
        return self.rc.ReadMainBatteryVoltage(self.address[0])[1]

    def getTemp(self):
        temp = [None] * 5
        for i in range(5):
            temp[i] = self.rc.ReadTemp(self.address[i])[1]
        return temp

    def getCurrents(self):
        currents = [None] * 10
        for i in range(5):
            currs = self.rc.ReadCurrents(self.address[i])
            currents[2*i] = currs[1]
            currents[(2*i) + 1] = currs[2]
        return currents

    def getErrors(self):
        return self.err

    def killMotors(self):
        """Stops all motors on Rover"""
        for i in range(5):
            self.rc.ForwardM1(self.address[i], 0)
            self.rc.ForwardM2(self.address[i], 0)

    def errorCheck(self):
        """Checks error status of each motor controller, returns 0 if any errors occur"""
        for i in range(len(self.address)):
            self.err[i] = self.rc.ReadError(self.address[i])[1]
        for error in self.err:
            if error:
                self.killMotors()
                rospy.logerr("Motor controller Error: \n'{}'".format(error))
#!/usr/bin/env python
from roboclaw import Roboclaw
import serial

rc = Roboclaw("/dev/ttyS0",115200)
rc.Open()
rc.ReadVersion(128)

print("Connected")

Exemple #11
0
class SerialDriver(object):
	'''
	Class for serial UART interface to the RoboClaw Motor Controllers
	
	'''
	def __init__(self):
		rospy.loginfo("Initilizing the motor controllers..")

		self.e_stop 			= 1
		self.reg_enabled 		= 0
		self.temp 			= 0
		self.error 			= 0
		self.voltage 			= 0

		self.currents 			= [0,0]
		self._thread_lock 		= False
		
		self.prev_enc_ts 		= None
		self.prev_tick 			= [None, None]

		self.start_time			= datetime.now()
		self.left_currents		= []
		self.right_currents		= []
		self.max_left_integrator	= 0
		self.max_right_integrator 	= 0
		self.left_integrator		= 0
		self.right_integrator		= 0
		self.motor_lockout 		= 0

		self._cmd_buf_flag		= 0
		self._l_vel_cmd_buf		= 0
		self._r_vel_cmd_buf		= 0
		self.battery_percent 		= 0
		self.shutdown_warning		= False
		self.shutdown_flag		= False

		self.rate = rospy.get_param("/puffer/rate")
		self.delta_t = 2.0/self.rate
		self.rc = Roboclaw(
				rospy.get_param("/motor_controllers/serial_device_name"), 
				rospy.get_param("/motor_controllers/baud_rate")
				)

		self.rc.Open()
		self._set_operating_params()
		self._get_version()
		self.set_estop(0)					#Clears E-stop pin
		self.enable_12v_reg(1)					#Disables 12V Regulator
		self.kill_motors()					#Start the motors not moving
		
	#Private Methods
	def _get_version(self):
		'''
		Version check for communication verification to the motor controllers
		
		returns ther version number if sucessful, and 0 if not
		'''
		
		
		version = self.rc.ReadVersion(self.address)
		if version != 0:
			rospy.loginfo("[Motor __init__ ] Sucessfully connected to all Motor Controllers!")
			rospy.loginfo( version )
			rospy.set_param("/motor_controllers/firmware_version",version)
		else:
			raise Exception("Unable to establish connection to Motor controllers")
		return version

	def _set_operating_params(self):
		'''
		Sets all the operating parameters for control of PUFFER, Pinouts, and 
		safety parameters.
		
		returns None
		'''

		#GPIO settings for E-stop and Regulator Enable pins
		self.e_stop_pin = rospy.get_param("/gpio_pins/e_stop",1)
		self.reg_en_pin = rospy.get_param("/gpio_pins/reg_en",1)
		
		try:
			GPIO.setmode(GPIO.BCM)
			GPIO.setwarnings(False)
			GPIO.setup(self.e_stop_pin, GPIO.OUT)
			GPIO.setup(self.reg_en_pin, GPIO.OUT)
		except:
			pass
		#Threadlock used for serial comm to RoboClaw
		self.thread_timeout		= rospy.get_param("/threadlock/timeout")

		#Motor operating parameters
		self.wheel_d = rospy.get_param("/wheels/diameter")
		self.enc_cpr = rospy.get_param("/wheels/encoder/cts_per_rev")
		factor = rospy.get_param("/wheels/encoder/factor")
		stage_1 = rospy.get_param("/wheels/gearbox/stage1")
		stage_2 = rospy.get_param("/wheels/gearbox/stage2")
		stage_3 = rospy.get_param("/wheels/gearbox/stage3")
		
		self.accel_const = rospy.get_param("/puffer/accel_const")
		self.max_vel_per_s = rospy.get_param("/puffer/max_vel_per_s")
		self.tick_per_rev = int(self.enc_cpr * factor * stage_1 * stage_2 * stage_3)
		rospy.loginfo(self.tick_per_rev)
		rospy.set_param("tick_per_rev", self.tick_per_rev)

		self.max_cts_per_s = int((self.max_vel_per_s * self.tick_per_rev)/(math.pi * self.wheel_d))
		self.max_accel = int(self.max_cts_per_s * self.accel_const)
		
		rospy.set_param("max_cts_per_s", self.max_cts_per_s)
		rospy.set_param("max_accel", self.max_accel)
		self.address = rospy.get_param("/motor_controllers/address", 0x80)
		self.rc.SetMainVoltages(self.address,int(rospy.get_param("/motor_controllers/battery/main/low", 12.0) * 10),int(rospy.get_param("motor_controllers/battery/main/high", 18.0 ) * 10))
		self.rc.SetLogicVoltages(self.address,int(rospy.get_param("/motor_controllers/battery/logic/low") * 10),int(rospy.get_param("motor_controllers/battery/logic/high") * 10))
		
		self.max_current = rospy.get_param("/motor_controllers/current/max_amps")
		self.motor_lockout_time = rospy.get_param("/puffer/motor_lockout_time")
		
		m1p = rospy.get_param("/motor_controllers/m1/p")
		m1i = rospy.get_param("/motor_controllers/m1/i")
		m1d = rospy.get_param("/motor_controllers/m1/d")
		m1qpps = rospy.get_param("/motor_controllers/m1/qpps")
		m2p = rospy.get_param("/motor_controllers/m2/p")
		m2i = rospy.get_param("/motor_controllers/m2/i")
		m2d = rospy.get_param("/motor_controllers/m2/d")
		m2qpps = rospy.get_param("/motor_controllers/m2/qpps")
		

		self.battery_max_time = rospy.get_param("/battery/max_time")
		self.battery_max_volts = rospy.get_param("/battery/max_volts")
		self.battery_coef_a = rospy.get_param("/battery/a")
		self.battery_coef_b = rospy.get_param("/battery/b")
		self.battery_coef_c = rospy.get_param("/battery/c")
		self.battery_warning = rospy.get_param("/battery/warning_percent")
		self.battery_shutdown = rospy.get_param("/battery/shutdown_percent")

		self.rc.SetM1VelocityPID(self.address,m1p, m1i, m1d, m1qpps)
		self.rc.SetM2VelocityPID(self.address,m2p, m2i, m2d, m2qpps)
		
		self.rc.WriteNVM(self.address)
		time.sleep(0.001)
		self.rc.ReadNVM(self.address)
		
	def _lock_thread(self,lock):
		'''
		Checks the thread lock and then grabs it when it frees up

		no return value

		'''
		if (lock):
			start = time.time()
			while self._thread_lock:
				#rospy.loginfo("in threadlock")
				if time.time() - start > self.thread_timeout:
					raise Exception("Thread lock timeout")
				time.sleep(0.001)
			self._thread_lock = True
		else:
			self._thread_lock = False

	def _get_Temp(self):
		'''
		Gets the temperature of the motor controllers
		
		return:
		list [2] (int): Temperature values * 10 degrees C
		
		'''
		self._lock_thread(1)
		self.temp = self.rc.ReadTemp(self.address)[1]
		self._lock_thread(0)
		self.temp = int(self.temp*100)/1000.0
		
		return self.temp	

	def _get_Voltage(self):
		'''
		Gets the voltage of the motor controllers
		
		return:
		voltage (int) : Voltage values * 10 volts
		
		'''
		self._lock_thread(1)
		v = self.rc.ReadMainBatteryVoltage(self.address)[1]
		v = int(v*100)/1000.0
		if v != 0:
			self.voltage = v + 0.4     #accounts for the voltage drop in the diode
		self._lock_thread(0)
		return v

	def _get_Currents(self):
		'''
		Gets the current of the motor controllers
		
		return:
		list [2] (int): Current values * 100 Amps
		
		'''
		self._lock_thread(1)
		cur = self.rc.ReadCurrents(self.address)
		self._lock_thread(0)
		r_current = int(cur[1])/100.0
		l_current = int(cur[2])/100.0
		self.currents = [l_current,r_current]
		
		self.left_currents.insert(0, l_current)
		self.right_currents.insert(0, r_current)

		if (len(self.left_currents) > self.rate/2):
			del self.left_currents[-1]
			del self.right_currents[-1]

		left_power = 0
		right_power = 0

		for i in range(len(self.left_currents)):
			left_power += math.pow(self.left_currents[i],2) * self.delta_t
			right_power += math.pow(self.right_currents[i],2) * self.delta_t

		if (left_power >= math.pow(self.max_current,2) or right_power >= math.pow(self.max_current,2)):
			rospy.loginfo("Motor power exceeded max allowed! Disabling motors for %d seconds" %(self.motor_lockout_time))
			self.motor_lockout = 1
			self.set_estop(1)
			self.lockout_timestamp = time.time()
			
		if (self.motor_lockout and (time.time() - self.lockout_timestamp >= self.motor_lockout_time)):
			rospy.loginfo("Re-enabling the motors from timeout lock")
			self.motor_lockout = 0
			self.set_estop(0)
			
		self.left_integrator = left_power
		self.right_integrator = right_power

		self.max_left_integrator = max(self.max_left_integrator, self.left_integrator)
		self.max_right_integrator = max(self.max_right_integrator, self.right_integrator)
		
		


		#print self.left_integrator, self.right_integrator

		return self.currents
	
	def _get_Errors(self):
		'''
		Gets the error status of the motor controllers
		
		return:
		error (int): Error code for motor controller
		
		'''
		self._lock_thread(1)
		self.error = self.rc.ReadError(self.address)[1]
		self._lock_thread(0)
		return self.error
	
	def _get_Encs(self):
		'''
		Gets the encoder values of the motor controllers
		
		return:
		list [2] (int): Speed of motors in radians/s, computed at each delta T
		
		'''
		self._lock_thread(1)
		r_enc = self.rc.ReadEncM1(self.address)[1]
		l_enc = self.rc.ReadEncM2(self.address)[1]
		dt = datetime.now()
		self._lock_thread(0)
		
		if self.prev_tick == [None, None]:
			l_vel_rad_s, r_vel_rad_s = 0,0
			self.timestamp = 0
		else:
			delta_t = ((dt-self.prev_enc_ts).microseconds)/1000000.0
			self.timestamp = int(self.timestamp + (delta_t  * 100000))
			l_vel = (l_enc - self.prev_tick[0])/(delta_t)
			r_vel = (r_enc - self.prev_tick[1])/(delta_t)
			
			l_vel_rad_s = l_vel * (2 * math.pi/self.tick_per_rev)
			r_vel_rad_s = r_vel * (2 * math.pi/self.tick_per_rev)
		
			l_vel_rad_s = int(l_vel_rad_s * 1000)/1000.0
			r_vel_rad_s = int(r_vel_rad_s * 1000)/1000.0
		
		self.prev_enc_ts = dt
		self.prev_tick = [l_enc, r_enc]
		self.enc = [l_vel_rad_s, r_vel_rad_s]
		
		return l_vel_rad_s, r_vel_rad_s

	def _send_motor_cmds(self):

		l_vel = self._l_vel_cmd_buf
		r_vel = self._r_vel_cmd_buf

		l_vel *= (self.tick_per_rev/(2*math.pi))
		r_vel *= (self.tick_per_rev/(2*math.pi))

		l_vel = max(min(l_vel,self.max_cts_per_s), -self.max_cts_per_s)
		r_vel = max(min(r_vel,self.max_cts_per_s), -self.max_cts_per_s)

		if (( abs(l_vel) <= self.max_cts_per_s) and (abs(r_vel) <= self.max_cts_per_s)):
			if not self.motor_lockout:
				self._lock_thread(1)
				self.rc.SpeedAccelM1(self.address, self.max_accel, int(r_vel))
				self.rc.SpeedAccelM2(self.address, self.max_accel, int(l_vel))
				self._lock_thread(0)
		else:
			rospy.loginfo( "values not in accepted range" )
			self.send_motor_cmds(0,0)

	# Public Methods

	def set_estop(self,val):
		'''
		Sets the E-stop pin to stop Motor control movement until cleared
		
		Parameters:
		val (int): 
			0 - Clears E-stop
			1 - Sets E-stop, disabling motor movement

		no return value
		
		'''

		if (val != self.e_stop):
			if val:
				rospy.loginfo( "Enabling the E-stop")
				GPIO.output(self.e_stop_pin, 1)
				self.e_stop = 1
			else:

				rospy.loginfo( "Clearing the E-stop")
				GPIO.output(self.e_stop_pin, 0)
				self.e_stop = 0


	def battery_state_esimator(self):
		x = self.voltage
		y = math.pow(x,2) * self.battery_coef_a + self.battery_coef_b * x + self.battery_coef_c
		self.battery_percent = (100 * y/float(self.battery_max_time))
		if (self.battery_percent <= self.battery_warning):
			self.shutdown_warning = True
		else:
			self.shutdown_warning = False
		if (self.battery_percent <= self.battery_shutdown):
			self.shutdown_flag = True
			self.set_estop(1)


	def update_cmd_buf(self, l_vel, r_vel):
		'''
		Updates the command buffers and sets the flag that new command has been received
		
		Parameters:
		l_vel (int): [-0.833, 0.833] units of [rad/s]
		r_vel (int): [-0.833, 0.833] units of [rad/s]
		
		no return value
		'''
		self._l_vel_cmd_buf = l_vel
		self._r_vel_cmd_buf = r_vel
		self._cmd_buf_flag = 1
			
	def kill_motors(self):
		'''
		Stops all motors on the assembly
		'''
		self._lock_thread(1)
		self.rc.ForwardM1(self.address, 0)
		self.rc.ForwardM2(self.address, 0)
		self._lock_thread(0)

	def loop(self, counter):
		'''
		Gets the data from the motor controllers to populate as class variables
		all data function classes are private because of threadlocks
	
		Downsample non-critical values to keep serial comm line free

		Parameters:
		counter (int): 

		no return value
		
		'''

		if (self._cmd_buf_flag):
			self._send_motor_cmds()
			self._cmd_buf_flag = 0

		self._get_Encs()
		if not counter % 2:
			self._get_Currents()
		if not counter % 5:
			self._get_Errors()
		if not counter % 20:
			self._get_Temp()
			self._get_Voltage()
			self.battery_state_esimator()

	def enable_12v_reg(self, en):
		'''
		Turns on/off the 12V regulator GPIO pin
		
		Parameters:
		en (int):
			0: Disabled
			1: Enabled
		
		'''
		try:
			if (en != self.reg_enabled):
				if en:
					rospy.loginfo("Enabling the 12V Regulator")
					GPIO.output(self.reg_en_pin, 1)
					self.reg_enabled = 1
				else:
					rospy.loginfo("Disabling the 12V Regulator")
					GPIO.output(self.reg_en_pin, 0)
					self.reg_enabled = 0
		except:
			pass

	def cleanup(self):
		'''
		Cleans up the motor controller node, stopping motors and killing all threads 

		no return value
		
		'''
		rospy.loginfo("Cleaning up the motor_controller node..")
		self._thread_lock = False
		self.kill_motors()
		self.set_estop(1)
		try:
			GPIO.cleanup()
		except:
			pass
class Motor(object):
	'''
	Motor class contains the methods necessary to send commands to the motor controllers
	
	for the corner and drive motors. There are many other ways of commanding the motors
	
	from the RoboClaw, we suggest trying to write your own Closed loop feedback method for
	
	the drive motors!

	'''
	def __init__(self,config):
		super(Motor,self).__init__(config)
			
		self.rc = Roboclaw( config['CONTROLLER_CONFIG']['device'],
							config['CONTROLLER_CONFIG']['baud_rate']
							)
		self.rc.Open()
		
		self.address         = config['MOTOR_CONFIG']['controller_address']
		self.accel           = [0]    * 10
		self.qpps            = [None] * 10
		self.err             = [None] * 5

		version = 1
		for address in self.address:
			version = version & self.rc.ReadVersion(address)[0]
			print(self.rc.ReadVersion(address)[0])

		if version != 0:
			print("[Motor__init__] Sucessfully connected to RoboClaw motor controllers")
		else:
                        print("-----")
			raise Exception("Unable to establish connection to Roboclaw motor controllers")

		self.enc_min =[]
		self.enc_max =[]
		for address in self.address:
			self.rc.SetMainVoltages(address,
									int(config['BATTERY_CONFIG']['low_voltage']*10), 
									int(config['BATTERY_CONFIG']['high_voltage']*10)
									)
			if address == 131 or address == 132:
				self.rc.SetM1MaxCurrent(address, int(config['MOTOR_CONFIG']['max_corner_current']*100))
				self.rc.SetM2MaxCurrent(address, int(config['MOTOR_CONFIG']['max_corner_current']*100))

				self.enc_min.append(self.rc.ReadM1PositionPID(address)[-2])
				self.enc_min.append(self.rc.ReadM2PositionPID(address)[-2])
				self.enc_max.append(self.rc.ReadM1PositionPID(address)[-1])
				self.enc_max.append(self.rc.ReadM2PositionPID(address)[-1])
				
			else:
				self.rc.SetM1MaxCurrent(address, int(config['MOTOR_CONFIG']['max_drive_current']*100))
				self.rc.SetM2MaxCurrent(address, int(config['MOTOR_CONFIG']['max_drive_current']*100))
				self.rc.ResetEncoders(address)

		for address in self.address:
			self.rc.WriteNVM(address)
			
		for address in self.address:
			self.rc.ReadNVM(address)

		voltage = self.rc.ReadMainBatteryVoltage(0x80)[1]/10.0
		if voltage >= config['BATTERY_CONFIG']['low_voltage']:
			print("[Motor__init__] Voltage is safe at: ",voltage, "V")
		else:
			raise Exception("Unsafe Voltage of" + voltage + " Volts") 

		i = 0

		for address in self.address:
			self.qpps[i]    = self.rc.ReadM1VelocityPID(address)[4]
			self.accel[i]   = int(self.qpps[i]*2)
			self.qpps[i+1]  = self.rc.ReadM2VelocityPID(address)[4]
			self.accel[i+1] = int(self.qpps[i]*2)
			i+=2
		
		self.errorCheck()	

	def cornerToPosition(self,tick):
		'''
		Method to send position commands to the corner motor

		:param list tick: A list of ticks for each of the corner motors to
		move to, if tick[i] is 0 it instead stops that motor from moving

		'''
		speed, accel = 1000,2000            #These values could potentially need tuning still
		self.errorCheck()
		for i in range(4):
			index = int(math.ceil((i+1)/2.0)+2)
			if tick[i]:
				if (i % 2):  self.rc.SpeedAccelDeccelPositionM2(self.address[index],accel,speed,accel,tick[i],1)
				else:        self.rc.SpeedAccelDeccelPositionM1(self.address[index],accel,speed,accel,tick[i],1)				
			else:
				if not (i % 2): self.rc.ForwardM1(self.address[index],0)
				else:           self.rc.ForwardM2(self.address[index],0)
			
	def sendMotorDuty(self, motorID, speed):
		'''
		Wrapper method for an easier interface to control the drive motors,
		
		sends open-loop commands to the motors

		:param int motorID: number that corresponds to each physical motor
		:param int speed: Speed for each motor, range from 0-127

		'''
		self.errorCheck()
		addr = self.address[int(motorID/2)]
		if speed > 0: 
			if not motorID % 2: command = self.rc.ForwardM1
			else:               command = self.rc.ForwardM2
		else: 
			if not motorID % 2: command = self.rc.BackwardM1
			else:               command = self.rc.BackwardM2

		speed = abs(int(speed * 127))
		
		return command(addr,speed)

	def killMotors(self):
		'''
		Stops all motors on Rover
		'''
		for i in range(5):
			self.rc.ForwardM1(self.address[i],0)
			self.rc.ForwardM2(self.address[i],0)
		
	def errorCheck(self):
		'''
		Checks error status of each motor controller, returns 0 if any errors occur
		'''

		for i in range(5):
			self.err[i] = self.rc.ReadError(self.address[i])[1]
		for error in self.err:
			if error:
				self.killMotors()
				self.writeError()
				raise Exception("Motor controller Error", error)
		return 1

	def writeError(self):
		'''
		Writes the list of errors to a text file for later examination
		'''

		f = open('errorLog.txt','a')
		errors = ','.join(str(e) for e in self.err)
		f.write('\n' + 'Errors: ' + '[' + errors + ']' + ' at: ' + str(datetime.datetime.now()))
		f.close()
Exemple #13
0
class Argo:
    def __init__(self):
        print "Trying to connect to motors..."
        self.motor_status = 0
        try:  # First step: connect to Roboclaw controller
            self.port = "/dev/ttyACM0"
            self.argo = Roboclaw(self.port, 115200)
            self.argo.Open()
            self.address = 0x80  # Roboclaw address
            self.version = self.argo.ReadVersion(
                self.address
            )  # Test connection by getting the Roboclaw version
        except:
            print "Unable to connect to Roboclaw port: ", self.port, "\nCheck your port and setup then try again.\nExiting..."
            self.motor_status = 1
            return

        # Follow through with setup if Roboclaw connected successfully
        print "Roboclaw detected! Version:", self.version[1]
        print "Setting up..."

        # Set up publishers and subscribers
        self.cmd_sub = rospy.Subscriber("/argo/wheel_speeds", Twist,
                                        self.get_wheel_speeds)
        self.encoder = rospy.Publisher("/argo/encoders", Encoder, queue_size=5)

        # Set class variables
        self.radius = 0.0728  # Wheel radius (m)
        self.distance = 0.372  # Distance between wheels (m)
        self.max_speed = 13000  # Global max speed (in QPPS)
        self.session_max = 13000  # Max speed for current session (in QPPS)
        self.rev_counts = 3200  # Encoder clicks per rotation
        self.circ = .4574  # Wheel circumference (m)
        self.counts_per_m = int(self.rev_counts /
                                self.circ)  # Encoder counts per meter
        self.conv = self.rev_counts / (2 * pi)  # Wheel speed conversion factor
        self.Lref = 0  # Left wheel reference speed
        self.Rref = 0  # Right wheel reference speed
        self.Lprev_err = 0  # Previous error value for left wheel
        self.Rprev_err = 0  # Previous error value for right wheel
        self.Kp = .004  # Proportional gain
        self.Kd = .001  # Derivative gain
        self.Ki = .0004  # Integral gain
        self.LEint = 0  # Left wheel integral gain
        self.REint = 0  # Right wheel integral gain
        print "Setup complete, let's roll homie ;)\n\n"

    def reset_controller(self):
        self.LEint = 0
        self.REint = 0
        self.Lprev_err = 0
        self.Rprev_err = 0

    def pd_control(self, Lspeed, Rspeed):
        # Controller outputs a percent effort (0 - 100) which will be applied to the reference motor speeds
        feedback = self.read_encoders()
        M1 = feedback.speedM1
        M2 = feedback.speedM2

        # Calculate current speed error for both motors
        Lerror = Lspeed - M2
        Rerror = Rspeed - M1

        # Calculate derivative error
        Ldot = Lerror - self.Lprev_err
        Rdot = Rerror - self.Rprev_err

        # Calculate integral error
        self.LEint += Lerror
        self.REint += Rerror

        # Compute effort
        Lu = self.Kp * Lerror + self.Kd * Ldot + self.Ki * self.LEint
        Ru = self.Kp * Rerror + self.Kd * Rdot + self.Ki * self.REint

        # Saturate efforts if it is over +/-100%
        if Lu > 100.0:
            Lu = 100.0
        elif Lu < -100.0:
            Lu = -100

        if Ru > 100.0:
            Ru = 100.0
        elif Ru < -100.0:
            Ru = -100.0

        # Set new L and R speeds
        Lspeed = int((Lu / 100) * self.session_max)
        Rspeed = int((Ru / 100) * self.session_max)

        self.Rprev_err = Rerror
        self.Lprev_err = Lerror

        return (Lspeed, Rspeed)

    def move(self, Lspeed, Rspeed):
        if Lspeed == 0 and Rspeed == 0:
            self.argo.SpeedM1(self.address, 0)
            self.argo.SpeedM2(self.address, 0)
            return

        (Lspeed, Rspeed) = self.pd_control(Lspeed, Rspeed)
        self.argo.SpeedM1(self.address, Rspeed)
        self.argo.SpeedM2(self.address, Lspeed)

    def force_speed(self, Lspeed, Rspeed):
        self.argo.SpeedM1(self.address, Rspeed)
        self.argo.SpeedM2(self.address, Lspeed)

    def get_velocity(self, vx, vy, ax, ay):
        v = sqrt((vx * vx) + (vy * vy))  # Linear velocity
        # if vx < 0:
        #     v = -v

        w = (vy * ax - vx * ay) / ((vx * vx) + (vy * vy))  # Angular velocity
        return (v, w)

    def get_wheel_speeds(self, data):
        r = self.radius
        d = self.distance
        v = data.linear.x
        w = data.angular.z

        # Calculate left/right wheel speeds and round to nearest integer value
        Ul = (v - w * d) / r
        Ur = (v + w * d) / r

        # Convert to QPPS
        Rspeed = int(round(Ur * self.conv))
        Lspeed = int(round(Ul * self.conv))

        if Rspeed > 0:
            Rspeed = Rspeed + 80
        elif Rspeed < 0:
            Rspeed = Rspeed - 20

        self.move(Lspeed, Rspeed)

    def reset_encoders(self):
        self.argo.ResetEncoders(self.address)

    def read_encoders(self):
        mov = Encoder()
        t = rospy.Time.now()

        # Get encoder values from Roboclaw
        enc2 = self.argo.ReadEncM2(self.address)
        enc1 = self.argo.ReadEncM1(self.address)

        # Get motor speeds
        sp1 = self.argo.ReadSpeedM1(self.address)
        sp2 = self.argo.ReadSpeedM2(self.address)

        # Extract encoder ticks and motor speeds, and publish to /argo/encoders topic
        mov.stamp.secs = t.secs
        mov.stamp.nsecs = t.nsecs
        mov.encoderM1 = enc1[1]
        mov.encoderM2 = enc2[1]
        mov.speedM1 = sp1[1]
        mov.speedM2 = sp2[1]
        return mov

    def check_battery(self):
        battery = self.argo.ReadMainBatteryVoltage(self.address)
        return battery[1]
class MotorControllersV2(object):
    '''
	Motor class contains the methods necessary to send commands to the motor controllers

	for the corner and drive motors. There are many other ways of commanding the motors

	from the RoboClaw, we suggest trying to write your own Closed loop feedback method for

	the drive motors!

	'''
    def __init__(self):
        ## MAKE SURE TO FIX CONFIG.JSON WHEN PORTED TO THE ROVER!
        #self.rc = Roboclaw( config['CONTROLLER_CONFIG']['device'],
        #					config['CONTROLLER_CONFIG']['baud_rate']
        #					)
        rospy.loginfo("Initializing motor controllers")
        #self.rc = Roboclaw( rospy.get_param('motor_controller_device', "/dev/serial0"),
        #					rospy.get_param('baud_rate', 115200))
        self.rc = Roboclaw("/dev/ttyS0", 115200)
        self.rc.Open()
        self.accel = [0] * 10
        self.qpps = [None] * 10
        self.err = [None] * 5

        address_raw = rospy.get_param('motor_controller_addresses')
        address_list = (address_raw.split(','))
        self.address = [None] * len(address_list)
        for i in range(len(address_list)):
            self.address[i] = int(address_list[i])

        version = 1
        for address in self.address:
            rospy.loginfo("Attempting to talk to motor controller: " +
                          str(address))
            version = version & self.rc.ReadVersion(address)[0]
            rospy.loginfo("Motor controller version: " + str(version))
        if version != 0:
            rospy.loginfo(
                "Sucessfully connected to RoboClaw motor controllers")
        else:
            rospy.logerr(
                "Unable to establish connection to Roboclaw motor controllers")
            raise Exception(
                "Unable to establish connection to Roboclaw motor controllers")
        self.killMotors()
        for address in self.address:
            self.rc.ResetEncoders(address)

        for address in self.address:
            self.rc.WriteNVM(address)

        for address in self.address:
            self.rc.ReadNVM(address)
        '''
		voltage = self.rc.ReadMainBatteryVoltage(0x80)[1]/10.0
		if voltage >= rospy.get_param('low_voltage',11):
			print "[Motor__init__] Voltage is safe at: ",voltage, "V"
		else:
			raise Exception("Unsafe Voltage of" + voltage + " Volts")
		'''
        i = 0

        for address in self.address:
            self.qpps[i] = self.rc.ReadM1VelocityPID(address)[4]
            self.accel[i] = int(self.qpps[i] * 2)
            self.qpps[i + 1] = self.rc.ReadM2VelocityPID(address)[4]
            self.accel[i + 1] = int(self.qpps[i] * 2)
            i += 2
        accel_max = 655359
        accel_rate = 0.5
        self.accel_pos = int((accel_max / 2) + accel_max * accel_rate)
        self.accel_neg = int((accel_max / 2) - accel_max * accel_rate)
        self.errorCheck()
        self.drive_enc = [None] * 10

        time.sleep(2)
        self.killMotors()

    def sendMotorDuty(self, motorID, speed):
        '''
		Wrapper method for an easier interface to control the drive motors,

		sends open-loop commands to the motors

		:param int motorID: number that corresponds to each physical motor
		:param int speed: Speed for each motor, range from 0-127

		'''
        #speed = speed/100.0
        #speed *= 0.5
        addr = self.address[int(motorID / 2)]
        if speed > 0:
            if not motorID % 2: command = self.rc.ForwardM1
            else: command = self.rc.ForwardM2
        else:
            if not motorID % 2: command = self.rc.BackwardM1
            else: command = self.rc.BackwardM2

        speed = abs(int(speed * 127))

        return command(addr, speed)

    def sendSignedDutyAccel(self, motorID, speed):
        addr = self.address[int(motorID / 2)]

        if speed > 0: accel = self.accel_pos
        else: accel = self.accel_neg

        if not motorID % 2: command = self.rc.DutyAccelM1
        else: command = self.rc.DutyAccelM2

        speed = int(32767 * speed / 100.0)
        return command(addr, accel, speed)

    def getDriveEnc(self):
        drive_enc = []
        for i in range(10):
            index = int(math.ceil((i + 1) / 2.0) - 1)
            if not (i % 2):
                drive_enc.append(self.rc.ReadEncM1(self.address[index])[1])
            else:
                drive_enc.append(self.rc.ReadEncM2(self.address[index])[1])
        self.drive_enc = drive_enc
        return drive_enc

    def getBattery(self):
        return self.rc.ReadMainBatteryVoltage(self.address[0])[1]

    def getTemp(self):
        temp = [None] * 5
        for i in range(5):
            temp[i] = self.rc.ReadTemp(self.address[i])[1]
        return temp

    def getCurrents(self):
        currents = [None] * 10
        for i in range(5):
            currs = self.rc.ReadCurrents(self.address[i])
            currents[2 * i] = currs[1]
            currents[(2 * i) + 1] = currs[2]
        return currents

    def getErrors(self):
        return self.err

    def killMotors(self):
        '''
		Stops all motors on Rover
		'''
        for i in range(5):
            self.rc.ForwardM1(self.address[i], 0)
            self.rc.ForwardM2(self.address[i], 0)

    def errorCheck(self):
        '''
		Checks error status of each motor controller, returns 0 if any errors occur
		'''

        for i in range(len(self.address)):
            self.err[i] = self.rc.ReadError(self.address[i])[1]
        for error in self.err:
            if error:
                self.killMotors()
                #self.writeError()
                rospy.loginfo("Motor controller Error: " + str(error))
        return 1

    def writeError(self):
        '''
		Writes the list of errors to a text file for later examination
		'''

        f = open('errorLog.txt', 'a')
        errors = ','.join(str(e) for e in self.err)
        f.write('\n' + 'Errors: ' + '[' + errors + ']' + ' at: ' +
                str(datetime.datetime.now()))
        f.close()
# A short and sweet script to test communication with a single roboclaw motor controller.
# usage
#   $ python roboclawtest.py 128

from time import sleep
import sys
from os import path
# need to add the roboclaw.py file in the path
sys.path.append(
    path.join(path.expanduser('~'), 'osr_ws/src/osr-rover-code/ROS/osr/src'))
from roboclaw import Roboclaw

if __name__ == "__main__":

    address = int(sys.argv[1])
    roboclaw = Roboclaw("/dev/serial0", 115200)
    roboclaw.Open()

    print roboclaw.ReadVersion(address)
    print roboclaw.ReadEncM1(address)
import time
from roboclaw import Roboclaw

#Windows comport name
#rc = Roboclaw("COM9",115200)
#Linux comport name
rc = Roboclaw("/dev/ttyACM0", 115200)

rc.Open()

while 1:
    #Get version string
    version = rc.ReadVersion(0x80)
    if version[0] == False:
        print "GETVERSION Failed"
    else:
        print repr(version[1])
    time.sleep(1)
Exemple #17
0
                time.sleep(1)
        rc.SpeedM2(address, speed)
        time.sleep(0.1)
        #Fine homing
        #Fine homing
        rc.SpeedM2(address, -100)
        time.sleep(3)
        rc.SpeedM2(address, 0)


rc.Open()
address1 = 0x80
address2 = 0x81
address3 = 0x82

version1 = rc.ReadVersion(address1)
version2 = rc.ReadVersion(address2)
version3 = rc.ReadVersion(address3)

if version1[0] == False:
    print "GETVERSION Failed"
else:
    print repr(version1[1])
    print repr(version2[1])
    print repr(version3[1])

while (1):

    for i in range(0, 20):
        rc.SpeedM1(address1, 32767)
        time.sleep(2)
Exemple #18
0
class motor_driver_ada:
    def __init__(self, log):
        self.lfbias = 48  # experimentally determined for 'Spot 2'
        self.lrbias = 44
        self.rrbias = 69
        self.rfbias = 40
        self.pan_bias = 83
        self.left_limit = -36
        self.right_limit = 36
        self.d1 = 7.254  #C/L to corner wheels
        self.d2 = 10.5  #mid axle to fwd axle
        self.d3 = 10.5  #mid axle to rear axle
        self.d4 = 10.073  #C/L to mid wheels
        self.speedfactor = 35  # 8000 counts at 100%
        self.rr_motor = kit.servo[0]
        self.rf_motor = kit.servo[1]
        self.lf_motor = kit.servo[2]
        self.lr_motor = kit.servo[3]
        self.pan = kit.servo[15]
        self.tilt = kit.servo[14]

        #pan_bias = 0        self.rr_motor.actuation_range = 120
        self.rf_motor.actuation_range = 120
        self.lf_motor.actuation_range = 120
        self.lr_motor.actuation_range = 120
        self.rr_motor.set_pulse_width_range(700, 2300)
        self.rf_motor.set_pulse_width_range(700, 2300)
        self.lf_motor.set_pulse_width_range(700, 2300)
        self.lr_motor.set_pulse_width_range(700, 2300)
        self.log = log

        self.rc = Roboclaw("/dev/ttyS0", 115200)
        i = self.rc.Open()
        self.crc = 0
        self.port = serial.Serial("/dev/ttyS0", baudrate=115200, timeout=0.1)

        self.lf_motor.angle = self.rfbias
        self.rf_motor.angle = self.lfbias
        self.lr_motor.angle = self.lrbias
        self.rr_motor.angle = self.rrbias
        self.stop_all()
        ver = self.rc.ReadVersion(0x80)
        print(ver[0], ver[1])
        ver = self.rc.ReadVersion(0x81)
        print(ver[0], ver[1])
        ver = self.rc.ReadVersion(0x82)
        print(ver[0], ver[1])

    def diag(self):
        print("servo rr =" + str(self.rr_motor.angle))
        print("servo rf =" + str(self.rf_motor.angle))
        print("servo lf =" + str(self.lf_motor.angle))
        print("servo lr =" + str(self.lr_motor.angle))
#       self.turn_motor(0x80, vel, voc, 1)

    def set_motor(self, address, v, av, m12):
        vx = int(v * av)
        if (m12 == 1):
            self.rc.SpeedM1(address, vx)
        else:
            self.rc.SpeedM2(address, vx)

    '''
    def turn_motor(self, address, v, av1, av2):
        v1 = int(v * av1)
        v2 = int(v * av2)
        if v >= 0:
            self.rc.ForwardM1(address, v1)
            self.rc.ForwardM2(address, v2)
#             self.M1Forward(address, v1)
#             self.M2Forward(address, v2)
        else:
            self.rc.BackwardM1(address, abs(v1))
            self.rc.BackwardM2(address, abs(v2))
#             self.M1Backward(address, abs(v1))
#             self.M2Backward(address, abs(v2))
#       print("m1, m2 = "+str(v1)+", "+str(v2))
    '''

    def stop_all(self):
        self.set_motor(0X80, 0, 0, 1)
        self.set_motor(0X81, 0, 0, 1)
        self.set_motor(0X82, 0, 0, 1)
        self.set_motor(0X80, 0, 0, 2)
        self.set_motor(0X81, 0, 0, 2)
        self.set_motor(0X82, 0, 0, 2)

    def motor_speed(self):
        speed1 = self.rc.ReadSpeedM1(0x80)
        speed2 = self.rc.ReadSpeedM2(0x80)
        self.log.write("motor speed = %d, %d" % (speed1[1], speed2[1]))
        print("motor speed = %d, %d" % (speed1[1], speed2[1]))
        speed1 = self.rc.ReadSpeedM1(0x81)
        speed2 = self.rc.ReadSpeedM2(0x81)
        self.log.write("motor speed = %d, %d" % (speed1[1], speed2[1]))
        print("motor speed = %d, %d" % (speed1[1], speed2[1]))
        speed1 = self.rc.ReadSpeedM1(0x82)
        speed2 = self.rc.ReadSpeedM2(0x82)
        self.log.write("motor speed = %d, %d" % (speed1[1], speed2[1]))
        print("motor speed = %d, %d" % (speed1[1], speed2[1]))
        #         self.battery_voltage()
        err = self.rc.ReadError(0x80)[1]
        if err:
            print("status of 0x80", err)
            self.log.write("0x80 error: %d" % err)
        err = self.rc.ReadError(0x81)[1]
        if err:
            print("status of 0x81", err)
            self.log.write("0x81 error: %d" % err)
        err = self.rc.ReadError(0x82)[1]
        if err:
            print("status of 0x82", err)
            self.log.write("0x82 error: %d" % err)

    def battery_voltage(self):
        volts = self.rc.ReadMainBatteryVoltage(0x80)[1] / 10.0
        print("Ada Voltage = ", volts)
        self.log.write("Voltage: %5.1f\n" % volts)
        return (volts)

# based on speed & steer, command all motors

    def motor(self, speed, steer):
        #        self.log.write("Motor speed, steer "+str(speed)+", "+str(steer)+'\n')
        if (steer < self.left_limit):
            steer = self.left_limit
        if (steer > self.right_limit):
            steer = self.right_limit
#        vel = speed * 1.26
        vel = self.speedfactor * speed
        voc = 0
        vic = 0
        #roboclaw speed limit 0 to 127
        # see BOT-2/18 (181201)
        # math rechecked 200329
        if steer != 0:  #if steering angle not zero, compute angles, wheel speed
            angle = math.radians(abs(steer))
            ric = self.d3 / math.sin(angle)  #turn radius - inner corner
            rm = ric * math.cos(angle) + self.d1  #body central radius
            roc = math.sqrt((rm + self.d1)**2 + self.d3**2)  #outer corner
            rmo = rm + self.d4  #middle outer
            rmi = rm - self.d4  #middle inner
            phi = math.degrees(math.asin(self.d3 / roc))
            if steer < 0:
                phi = -phi
            voc = roc / rmo  #velocity corners & middle inner
            vic = ric / rmo
            vim = rmi / rmo

# SERVO MOTORS ARE COUNTER CLOCKWISE
# left turn
        if steer < 0:
            self.lf_motor.angle = self.lfbias - steer
            self.rf_motor.angle = self.rfbias - phi
            self.lr_motor.angle = self.lrbias + steer
            self.rr_motor.angle = self.rrbias + phi
            #            self.turn_motor(0x80, vel, voc, 1)          #RC 1 - rf, rm
            #            self.turn_motor(0x81, vel, voc, vic)        #RC 2 - lm, lf
            #            self.turn_motor(0x82, vel, vim, vic)        #RC 3 - rr, lr
            self.set_motor(0x80, vel, voc, 1)  #RC 1 - rf, rm
            self.set_motor(0x81, vel, voc, 1)  #RC 2 - lm, lf
            self.set_motor(0x82, vel, vim, 1)  #RC 3 - rr, lr
            self.set_motor(0x80, vel, 1, 2)  #RC 1 - rf, rm
            self.set_motor(0x81, vel, vic, 2)  #RC 2 - lm, lf
            self.set_motor(0x82, vel, vic, 2)  #RC 3 - rr, lr
#             cstr = "v, vout, vin %f %f %f\n" % (vel, voc, vic)
#             self.log.write(cstr)

#right turn
        elif steer > 0:
            self.lf_motor.angle = self.lfbias - phi
            self.rf_motor.angle = self.rfbias - steer
            self.lr_motor.angle = self.lrbias + phi
            self.rr_motor.angle = self.rrbias + steer
            #            self.turn_motor(0x80, vel, vic, vim)
            #            self.turn_motor(0x81, vel, vic, voc)
            #            self.turn_motor(0x82, vel, 1, voc)
            self.set_motor(0x80, vel, vic, 1)
            self.set_motor(0x81, vel, vic, 1)
            self.set_motor(0x82, vel, 1, 1)
            self.set_motor(0x80, vel, vim, 2)
            self.set_motor(0x81, vel, voc, 2)
            self.set_motor(0x82, vel, voc, 2)
            #            print("80 vic, vim ",vic,vim)
#            print("81 vic, voc ",vic,voc)
#            print("82 vom, voc ", 1, voc)
#             cstr = "v, vout, vin %f %f %f\n" % (vel, voc, vic)
#             self.log.write(cstr)

#straight ahead
        else:
            self.lf_motor.angle = self.lfbias
            self.rf_motor.angle = self.rfbias
            self.lr_motor.angle = self.lrbias
            self.rr_motor.angle = self.rrbias
            self.set_motor(0x80, vel, 1, 1)
            self.set_motor(0x81, vel, 1, 1)
            self.set_motor(0x82, vel, 1, 1)
            self.set_motor(0x80, vel, 1, 2)
            self.set_motor(0x81, vel, 1, 2)
            self.set_motor(0x82, vel, 1, 2)
#       print("v, vout, vin "+str(vel)+", "+str(voc)+", "+str(vic))
#       self.diag()
#             cstr = "v, vout, vin %f %f %f\n" % (vel, voc, vic)
#             self.log.write(cstr)

    def sensor_pan(self, angle):
        self.pan.angle = self.pan_bias + angle

    def depower(self):
        self.lf_motor.angle = None
        self.rf_motor.angle = None
        self.lr_motor.angle = None
        self.rr_motor.angle = None
        self.pan.angle = None
Exemple #19
0
    print "Speed1:",
    if (speed1[0]):
        print speed1[1],
    else:
        print "failed",
    print("Speed2:"),
    if (speed2[0]):
        print speed2[1]
    else:
        print "failed "


rc.Open()
address = 0x80

version = rc.ReadVersion(address)
if version[0] == False:
    print "GETVERSION Failed"
else:
    print repr(version[1])

while (1):
    #	rc.SpeedM1(address,12000)
    rc.SpeedM2(address, -12000)
    for i in range(0, 20):
        displayspeed()
        time.sleep(0.01)

#	rc.SpeedM1(address,-12000)
    rc.SpeedM2(address, 12000)
    for i in range(0, 20):
class RM501_Control:
    axis_map = (
        ("gripper", 128, 1, 5000, 10000),
        ("axis 1", 128, 2, 5000, 10000),
        ("axis 2", 129, 1, 5000, 10000),
        ("axis 3", 129, 2, 5000, 10000),
        ("axis 4", 130, 1, 5000, 10000),
        ("axis 5", 130, 2, 5000, 10000),
    )

    def __init__(self, serport=DEFAULT_PORT):
        self._rc = Roboclaw(serport, 115200)
        self._rc_polling_thread = Thread(target=self._polling_loop,
                                         name="Encoders Polling Thread")

        self.axes = []
        self.addrs = []

        for (name, addr, m_nr, def_spd, def_acc) in self.axis_map:
            self.axes.append(Axis(self._rc, name, addr, m_nr, def_spd,
                                  def_acc))

            if addr not in self.addrs:
                self.addrs.append(addr)

        self.diff_axes = [
            DiffTransmission(self.axes[4], self.axes[5]),
            DiffTransmission(self.axes[5], self.axes[4])
        ]

    def connect(self):
        if hasattr(self._rc, "_port") and self._rc._port.isOpen():
            return

        self._rc.Open()
        #		if not self._rc.Open():
        #			raise RuntimeError("Could not open port {}".format(self._rc.comport))

        self.versions = {}

        for addr in self.addrs:
            (success, version) = self._rc.ReadVersion(addr)
            if success:
                self.versions[addr] = version
            else:
                raise RuntimeError(
                    "GETVERSION on board {} Failed".format(addr))

        for (addr, version) in self.versions.items():
            print("Board {} Version: {}".format(addr, version))

        self._run_polling = True
        self._rc_polling_thread.start()
        threadpool.start(worker)

    def _polling_loop(self):
        while self._run_polling:
            for a in self.axes:
                a.read_position()
                a.read_velocity()

            time.sleep(0.05)

    def stop(self):
        print("STOPPING {}".format(self._rc_polling_thread.name))
        self._run_polling = False
        self._rc_polling_thread.join()
        worker.running = False
        waypoint_executor.running = False
        self._rc._port.close()
        print("{} STOPPED".format(self._rc_polling_thread.name))