def detection(model,config):

    print("> Building Graph")
    # tf Session Config
    tf_config = tf.ConfigProto(allow_soft_placement=True)
    tf_config.gpu_options.allow_growth=True
    detection_graph = model.detection_graph
    category_index = model.category_index
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph,config=tf_config) as sess:
            # start Videostream
            vs = WebcamVideoStream(config.VIDEO_INPUT,config.WIDTH,config.HEIGHT).start()
            # Define Input and Ouput tensors
            tensor_dict = model.get_tensordict(['num_detections', 'detection_boxes', 'detection_scores','detection_classes', 'detection_masks'])
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            # Mask Transformations


            fps = FPS(config.FPS_INTERVAL).start()
            print('> Starting Detection')
            while vs.isActive():
                # Detection
                if not (config.USE_TRACKER):
                    # default session
                    frame = vs.read()
                    output_dict = sess.run(tensor_dict, feed_dict={image_tensor: vs.expanded()})
                    num = output_dict['num_detections'][0]
                    classes = output_dict['detection_classes'][0]
                    boxes = output_dict['detection_boxes'][0]
                    scores = output_dict['detection_scores'][0]
                    if 'detection_masks' in output_dict:
                        masks = output_dict['detection_masks'][0]
                    else:
                        masks = None

                    # reformat detection
                    num = int(num)
                    boxes = np.squeeze(boxes)
                    classes = np.squeeze(classes).astype(np.uint8)
                    scores = np.squeeze(scores)

                    # Visualization
                    vis = vis_detection(frame, boxes, classes, scores, masks, category_index, fps.fps_local(),
                                        config.VISUALIZE, config.DET_INTERVAL, config.DET_TH, config.MAX_FRAMES,
                                        fps._glob_numFrames, config.OD_MODEL_NAME)
                    if not vis:
                        break

                fps.update()

    # End everything
    vs.stop()
    fps.stop()
Exemple #2
0
def detection(model, config):
    # Tf Session
    tf_config = model.tf_config
    detection_graph = model.detection_graph
    category_index = model.category_index
    print("> Building Graph")
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph, config=tf_config) as sess:
            # start Videostream
            # Define Input and Ouput tensors
            tensor_dict = model.get_tensordict([
                'num_detections', 'detection_boxes', 'detection_scores',
                'detection_classes', 'detection_masks'
            ])
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            # Mask Transformations
            if 'detection_masks' in tensor_dict:
                # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
                detection_boxes = tf.squeeze(tensor_dict['detection_boxes'],
                                             [0])
                detection_masks = tf.squeeze(tensor_dict['detection_masks'],
                                             [0])
                real_num_detection = tf.cast(tensor_dict['num_detections'][0],
                                             tf.int32)
                detection_boxes = tf.slice(detection_boxes, [0, 0],
                                           [real_num_detection, -1])
                detection_masks = tf.slice(detection_masks, [0, 0, 0],
                                           [real_num_detection, -1, -1])
                detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
                    detection_masks, detection_boxes, config.HEIGHT,
                    config.WIDTH)
                detection_masks_reframed = tf.cast(
                    tf.greater(detection_masks_reframed, 0.5), tf.uint8)
                # Follow the convention by adding back the batch dimension
                tensor_dict['detection_masks'] = tf.expand_dims(
                    detection_masks_reframed, 0)
            if config.SPLIT_MODEL:
                score_out = detection_graph.get_tensor_by_name(
                    'Postprocessor/convert_scores:0')
                expand_out = detection_graph.get_tensor_by_name(
                    'Postprocessor/ExpandDims_1:0')
                score_in = detection_graph.get_tensor_by_name(
                    'Postprocessor/convert_scores_1:0')
                expand_in = detection_graph.get_tensor_by_name(
                    'Postprocessor/ExpandDims_1_1:0')
                # Threading
                score = model.score
                expand = model.expand

            # Timeliner
            if config.WRITE_TIMELINE:
                options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()
                timeliner = TimeLiner()
            else:
                options = tf.RunOptions(trace_level=tf.RunOptions.NO_TRACE)
                run_metadata = False

            images = load_images(config.IMAGE_PATH, config.LIMIT_IMAGES)
            timer = Timer().start()
            print('> Starting Detection')
            for image in images:
                if config.SPLIT_MODEL:
                    # split model in seperate gpu and cpu session threads
                    masks = None  # No Mask Detection possible yet
                    frame = cv2.resize(cv2.imread(image),
                                       (config.WIDTH, config.HEIGHT))
                    frame_expanded = np.expand_dims(cv2.cvtColor(
                        frame, cv2.COLOR_BGR2RGB),
                                                    axis=0)
                    timer.tic()
                    # GPU Session
                    score, expand = sess.run(
                        [score_out, expand_out],
                        feed_dict={image_tensor: frame_expanded},
                        options=options,
                        run_metadata=run_metadata)
                    timer.tictic()
                    if config.WRITE_TIMELINE:
                        timeliner.write_timeline(
                            run_metadata.step_stats,
                            'test_results/timeline_{}{}{}{}.json'.format(
                                config.OD_MODEL_NAME, '_SM1', config._DEV,
                                config._OPT))
                    timer.tic()
                    # CPU Session
                    boxes, scores, classes, num = sess.run(
                        [
                            tensor_dict['detection_boxes'],
                            tensor_dict['detection_scores'],
                            tensor_dict['detection_classes'],
                            tensor_dict['num_detections']
                        ],
                        feed_dict={
                            score_in: score,
                            expand_in: expand
                        },
                        options=options,
                        run_metadata=run_metadata)
                    timer.toc()
                    if config.WRITE_TIMELINE:
                        timeliner.write_timeline(
                            run_metadata.step_stats,
                            'test_results/timeline_{}{}{}{}.json'.format(
                                config.OD_MODEL_NAME, '_SM2', config._DEV,
                                config._OPT))
                else:
                    # default session
                    frame = cv2.resize(cv2.imread(image),
                                       (config.WIDTH, config.HEIGHT))
                    frame_expanded = np.expand_dims(cv2.cvtColor(
                        frame, cv2.COLOR_BGR2RGB),
                                                    axis=0)
                    timer.tic()
                    output_dict = sess.run(
                        tensor_dict,
                        feed_dict={image_tensor: frame_expanded},
                        options=options,
                        run_metadata=run_metadata)
                    timer.toc()
                    if config.WRITE_TIMELINE:
                        timeliner.write_timeline(
                            run_metadata.step_stats,
                            'test_results/timeline_{}{}{}.json'.format(
                                config.OD_MODEL_NAME, config._DEV,
                                config._OPT))
                    num = output_dict['num_detections'][0]
                    classes = output_dict['detection_classes'][0]
                    boxes = output_dict['detection_boxes'][0]
                    scores = output_dict['detection_scores'][0]
                    if 'detection_masks' in output_dict:
                        masks = output_dict['detection_masks'][0]
                    else:
                        masks = None

                # reformat detection
                num = int(num)
                boxes = np.squeeze(boxes)
                classes = np.squeeze(classes).astype(np.uint8)
                scores = np.squeeze(scores)

                # Visualization
                vis = vis_detection(frame, boxes, classes,
                                    scores, masks, category_index,
                                    timer.get_fps(), config.VISUALIZE,
                                    config.DET_INTERVAL, config.DET_TH,
                                    config.MAX_FRAMES, None,
                                    config.OD_MODEL_NAME + config._OPT)
                if not vis:
                    break

    cv2.destroyAllWindows()
    timer.stop()
def detection(model,config):
    # Tracker
    if config.USE_TRACKER:
        import sys
        sys.path.append(os.getcwd()+'/stuff/kcf')
        import KCF
        tracker = KCF.kcftracker(False, True, False, False)
        tracker_counter = 0
        track = False

    print("> Building Graph")
    # tf Session Config
    tf_config = model.tf_config
    detection_graph = model.detection_graph
    category_index = model.category_index
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph,config=tf_config) as sess:
            # start Videostream
            vs = WebcamVideoStream(config.VIDEO_INPUT,config.WIDTH,config.HEIGHT).start()
            # Define Input and Ouput tensors
            tensor_dict = model.get_tensordict(['num_detections', 'detection_boxes', 'detection_scores','detection_classes', 'detection_masks'])
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            # Mask Transformations
            if 'detection_masks' in tensor_dict:
                # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
                detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
                detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
                real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
                detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
                detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
                detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
                        detection_masks, detection_boxes, vs.real_height, vs.real_width)
                detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)
                # Follow the convention by adding back the batch dimension
                tensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0)
            if config.SPLIT_MODEL:
                score_out = detection_graph.get_tensor_by_name('Postprocessor/convert_scores:0')
                expand_out = detection_graph.get_tensor_by_name('Postprocessor/ExpandDims_1:0')
                score_in = detection_graph.get_tensor_by_name('Postprocessor/convert_scores_1:0')
                expand_in = detection_graph.get_tensor_by_name('Postprocessor/ExpandDims_1_1:0')
                # Threading
                score = model.score
                expand = model.expand
                gpu_worker = SessionWorker("GPU",detection_graph,tf_config)
                cpu_worker = SessionWorker("CPU",detection_graph,tf_config)
                gpu_opts = [score_out, expand_out]
                cpu_opts = [tensor_dict['detection_boxes'], tensor_dict['detection_scores'], tensor_dict['detection_classes'], tensor_dict['num_detections']]
                gpu_counter = 0
                cpu_counter = 0

            fps = FPS(config.FPS_INTERVAL).start()
            print('> Starting Detection')
            while vs.isActive():
                # Detection
                if not (config.USE_TRACKER and track):
                    if config.SPLIT_MODEL:
                        # split model in seperate gpu and cpu session threads
                        masks = None # No Mask Detection possible yet
                        if gpu_worker.is_sess_empty():
                            # read video frame, expand dimensions and convert to rgb
                            frame = vs.read()
                            # put new queue
                            gpu_feeds = {image_tensor: vs.expanded()}
                            if config.VISUALIZE:
                                gpu_extras = frame # for visualization frame
                            else:
                                gpu_extras = None
                            gpu_worker.put_sess_queue(gpu_opts,gpu_feeds,gpu_extras)
                        g = gpu_worker.get_result_queue()
                        if g is None:
                            # gpu thread has no output queue. ok skip, let's check cpu thread.
                            gpu_counter += 1
                        else:
                            # gpu thread has output queue.
                            gpu_counter = 0
                            score,expand,frame = g["results"][0],g["results"][1],g["extras"]

                            if cpu_worker.is_sess_empty():
                                # When cpu thread has no next queue, put new queue.
                                # else, drop gpu queue.
                                cpu_feeds = {score_in: score, expand_in: expand}
                                cpu_extras = frame
                                cpu_worker.put_sess_queue(cpu_opts,cpu_feeds,cpu_extras)
                        c = cpu_worker.get_result_queue()
                        if c is None:
                            # cpu thread has no output queue. ok, nothing to do. continue
                            cpu_counter += 1
                            continue # If CPU RESULT has not been set yet, no fps update
                        else:
                            cpu_counter = 0
                            boxes, scores, classes, num, frame = c["results"][0],c["results"][1],c["results"][2],c["results"][3],c["extras"]
                    else:
                        # default session
                        frame = vs.read()
                        output_dict = sess.run(tensor_dict, feed_dict={image_tensor: vs.expanded()})
                        num = output_dict['num_detections'][0]
                        classes = output_dict['detection_classes'][0]
                        boxes = output_dict['detection_boxes'][0]
                        scores = output_dict['detection_scores'][0]
                        if 'detection_masks' in output_dict:
                            masks = output_dict['detection_masks'][0]
                        else:
                            masks = None

                    # reformat detection
                    num = int(num)
                    boxes = np.squeeze(boxes)
                    classes = np.squeeze(classes).astype(np.uint8)
                    scores = np.squeeze(scores)

                    # Visualization
                    vis = vis_detection(frame, boxes, classes, scores, masks, category_index, fps.fps_local(),
                                        config.VISUALIZE, config.DET_INTERVAL, config.DET_TH, config.MAX_FRAMES,
                                        fps._glob_numFrames, config.OD_MODEL_NAME)
                    if not vis:
                        break

                    # Activate Tracker
                    if config.USE_TRACKER and num <= config.NUM_TRACKERS:
                        tracker_frame = frame
                        track = True
                        first_track = True

                # Tracking
                else:
                    frame = vs.read()
                    if first_track:
                        trackers = []
                        tracker_boxes = boxes
                        for box in boxes[~np.all(boxes == 0, axis=1)]:
                                tracker.init(conv_detect2track(box,vs.real_width, vs.real_height), tracker_frame)
                                trackers.append(tracker)
                        first_track = False

                    for idx,tracker in enumerate(trackers):
                        tracker_box = tracker.update(frame)
                        tracker_boxes[idx,:] = conv_track2detect(tracker_box, vs.real_width, vs.real_height)
                    vis = vis_detection(frame, tracker_boxes, classes, scores, masks, category_index, fps.fps_local(),
                                        config.VISUALIZE, config.DET_INTERVAL, config.DET_TH, config.MAX_FRAMES,
                                        fps._glob_numFrames, config.OD_MODEL_NAME)
                    if not vis:
                        break

                    tracker_counter += 1
                    #tracker_frame = frame
                    if tracker_counter >= config.TRACKER_FRAMES:
                        track = False
                        tracker_counter = 0

                fps.update()

    # End everything
    vs.stop()
    fps.stop()
    if config.SPLIT_MODEL:
        gpu_worker.stop()
        cpu_worker.stop()
def detection(model, config):

    print("> Building Graph")
    # tf Session Config
    tf_config = tf.ConfigProto(allow_soft_placement=True)
    tf_config.gpu_options.allow_growth = True
    tf_config.gpu_options.per_process_gpu_memory_fraction = 0.1
    detection_graph = model.detection_graph
    category_index = model.category_index
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph, config=tf_config) as sess:
            # start Videostream
            # vs = WebcamVideoStream(config.VIDEO_INPUT,config.WIDTH,config.HEIGHT).start()
            vs = MultiImagesMemmap(mode="r",
                                   name="main_stream",
                                   memmap_path=os.getenv(
                                       "MEMMAP_PATH", "/tmp"))
            vs.wait_until_available()  #initialize and find video data
            # Define Input and Ouput tensors
            tensor_dict = model.get_tensordict([
                'num_detections', 'detection_boxes', 'detection_scores',
                'detection_classes', 'detection_masks'
            ])
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

            score_out = detection_graph.get_tensor_by_name(
                'Postprocessor/convert_scores:0')
            expand_out = detection_graph.get_tensor_by_name(
                'Postprocessor/ExpandDims_1:0')
            score_in = detection_graph.get_tensor_by_name(
                'Postprocessor/convert_scores_1:0')
            expand_in = detection_graph.get_tensor_by_name(
                'Postprocessor/ExpandDims_1_1:0')
            # Threading
            score = model.score
            expand = model.expand
            gpu_worker = SessionWorker("GPU", detection_graph, tf_config)
            cpu_worker = SessionWorker("CPU", detection_graph, tf_config)
            gpu_opts = [score_out, expand_out]
            cpu_opts = [
                tensor_dict['detection_boxes'],
                tensor_dict['detection_scores'],
                tensor_dict['detection_classes'], tensor_dict['num_detections']
            ]
            gpu_counter = 0
            cpu_counter = 0

            fps = FPS2(config.FPS_INTERVAL).start()
            print('> Starting Detection')
            frame = vs.read("C")
            # frame = vs.read()
            h, w, _ = frame.shape
            vs.real_width, vs.real_height = w, h
            while True:
                # Detection

                # split model in seperate gpu and cpu session threads
                masks = None  # No Mask Detection possible yet
                if gpu_worker.is_sess_empty():
                    # read video frame, expand dimensions and convert to rgb
                    frame = vs.read("C")
                    # frame = vs.read()
                    # put new queue
                    image_expanded = np.expand_dims(cv2.cvtColor(
                        frame, cv2.COLOR_BGR2RGB),
                                                    axis=0)
                    gpu_feeds = {image_tensor: image_expanded}
                    if config.VISUALIZE:
                        gpu_extras = frame  # for visualization frame
                    else:
                        gpu_extras = None
                    gpu_worker.put_sess_queue(gpu_opts, gpu_feeds, gpu_extras)
                g = gpu_worker.get_result_queue()
                if g is None:
                    # gpu thread has no output queue. ok skip, let's check cpu thread.
                    gpu_counter += 1
                else:
                    # gpu thread has output queue.
                    gpu_counter = 0
                    score, expand, frame = g["results"][0], g["results"][1], g[
                        "extras"]

                    if cpu_worker.is_sess_empty():
                        # When cpu thread has no next queue, put new queue.
                        # else, drop gpu queue.
                        cpu_feeds = {score_in: score, expand_in: expand}
                        cpu_extras = frame
                        cpu_worker.put_sess_queue(cpu_opts, cpu_feeds,
                                                  cpu_extras)
                c = cpu_worker.get_result_queue()
                if c is None:
                    # cpu thread has no output queue. ok, nothing to do. continue
                    cpu_counter += 1
                    continue  # If CPU RESULT has not been set yet, no fps update
                else:
                    cpu_counter = 0
                    boxes, scores, classes, num, frame = c["results"][0], c[
                        "results"][1], c["results"][2], c["results"][3], c[
                            "extras"]

                    # reformat detection
                    num = int(num)
                    boxes = np.squeeze(boxes)
                    classes = np.squeeze(classes).astype(np.uint8)
                    scores = np.squeeze(scores)

                    # Visualization
                    # print frame.shape
                    if frame is not None:
                        vis = vis_detection(frame.copy(), boxes, classes,
                                            scores, masks, category_index,
                                            fps.fps_local(), config.VISUALIZE,
                                            config.DET_INTERVAL, config.DET_TH,
                                            config.MAX_FRAMES,
                                            fps._glob_numFrames,
                                            config.OD_MODEL_NAME)
                        if not vis:
                            break

                fps.update()

    # End everything
    # vs.stop()
    fps.stop()
    if config.SPLIT_MODEL:
        gpu_worker.stop()
        cpu_worker.stop()