def scan_known_people(train_dir): known_names = [] known_face_encodings = [] print("CNN image pre-process starting.........") # Loop through each person in the training set for class_dir in os.listdir(train_dir): if not os.path.isdir(os.path.join(train_dir, class_dir)): continue # Loop through each training image for the current person for file in image_files_in_folder(os.path.join(train_dir, class_dir)): basename = os.path.splitext(os.path.basename(file))[0] print('{} filename'.format(basename)) if (len(basename.split("_")) > 1): member_firstname = basename.split('_')[0] member_lastname = basename.split('_')[1] else: member_firstname = basename member_lastname = "" face_image = face_recognition.load_image_file(file) face_locations = face_recognition.face_locations( face_image, number_of_times_to_upsample=2, model='cnn') encodings = face_recognition.face_encodings( face_image, known_face_locations=face_locations, num_jitters=30) if len(encodings) > 1: click.echo( "WARNING: More than one face found in {}. Only considering the first face." .format(file)) if len(encodings) == 0: click.echo( "WARNING: No faces found in {}. Ignoring file.".format( file)) else: known_names.append(basename) # known_face_encodings.append(encodings[0]) insertmember(member_firstname, member_lastname, encodings[0]) click.echo(f'Member {basename} has been added.', color='green')
def train(train_dir, model_save_path=None, n_neighbors=None, knn_algo='auto', verbose=True): """ Trains a k-nearest neighbors classifier for face recognition. :param train_dir: directory that contains a sub-directory for each known person, with its name. (View in source code to see train_dir example tree structure) Structure: <train_dir>/ ├── <person1>/ │ ├── <somename1>.jpeg │ ├── <somename2>.jpeg │ ├── ... ├── <person2>/ │ ├── <somename1>.jpeg │ └── <somename2>.jpeg └── ... :param model_save_path: (optional) path to save model on disk :param n_neighbors: (optional) number of neighbors to weigh in classification. Chosen automatically if not specified :param knn_algo: (optional) underlying data structure to support knn.default is ball_tree :param verbose: verbosity of training :return: returns knn classifier that was trained on the given data. """ X = [] y = [] # Loop through each person in the training set for class_dir in os.listdir(train_dir): if not os.path.isdir(os.path.join(train_dir, class_dir)): continue # Loop through each training image for the current person for img_path in image_files_in_folder( os.path.join(train_dir, class_dir)): image = face_recognition.load_image_file(img_path) face_bounding_boxes = face_recognition.face_locations(image) if len(face_bounding_boxes) != 1: # If there are no people (or too many people) in a training image, skip the image. if verbose: print("Image {} not suitable for training: {}".format( img_path, "Didn't find a face" if len(face_bounding_boxes) < 1 else "Found more than one face")) else: # Add face encoding for current image to the training set X.append( face_recognition.face_encodings( image, known_face_locations=face_bounding_boxes)[0]) y.append(class_dir) # Determine how many neighbors to use for weighting in the KNN classifier if n_neighbors is None: n_neighbors = int(round(math.sqrt(len(X)))) if verbose: print("Chose n_neighbors automatically:", n_neighbors) # Create and train the KNN classifier knn_clf = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, algorithm=knn_algo, weights='uniform') knn_clf.fit(X, y) # Save the trained KNN classifier if model_save_path is not None: with open(model_save_path, 'wb') as f: pickle.dump(knn_clf, f) return knn_clf
print("[INFO] quantifying faces...") imagePaths = list(paths.list_images(args["dataset"])) data = [] # loop over the image paths for (i, imagePath) in enumerate(imagePaths): # load the input image and convert it from RGB (OpenCV ordering) # to dlib ordering (RGB) print("[INFO] processing image {}/{}".format(i + 1, len(imagePaths))) print(imagePath) image = cv2.imread(imagePath) rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # detect the (x, y)-coordinates of the bounding boxes # corresponding to each face in the input image boxes = face_recognition.face_locations(rgb, model=args["detection_method"]) # compute the facial embedding for the face encodings = face_recognition.face_encodings(rgb, boxes) # build a dictionary of the image path, bounding box location, # and facial encodings for the current image d = [{ "imagePath": imagePath, "loc": box, "encoding": enc } for (box, enc) in zip(boxes, encodings)] data.extend(d) # dump the facial encodings data to disk print("[INFO] serializing encodings...")
def imageparser(): #Initialize some variables face_locations = [] face_encodings = [] #face_names = [] req = request # convert string of image data to uint8 nparr = np.fromstring(req.data, np.uint8) # decode image img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) # Find all the faces and face encodings in the current frame of video face_locations = face_recognition.face_locations( img, number_of_times_to_upsample=2) face_encodings = face_recognition.face_encodings(img, face_locations, num_jitters=10) face_names = [] # if the face is unknown look for the CNN model comparision app.logger.info("Checking the CNN Model") face_names, unidentified_face_encodings = mlearning.cnn_compare( face_encodings) # for x in face_new_names: # face_names.append(x) app.logger.info( "Length of face_names : {}, unidentified names : {}".format( len(face_names), len(unidentified_face_encodings))) if (len(unidentified_face_encodings) >= 1): #app.logger.info("face encodings {}".format(unidentified_face_encodings)) # # ------------------------------------------ KNN Model Prediction ------------------------------ # # Note: You can pass in either a classifier file name or a classifier model instance predictions = mlearning.predict_without_location( len(unidentified_face_encodings), unidentified_face_encodings, knn_clf=knn_clf, model_path=None) app.logger.info(predictions) for name in predictions: app.logger.debug("- Found {} ".format(name)) if (len(str(name).split("_")) > 1): app.logger.debug("Name: " + str(name).split("_")[1]) face_names.append(str(name).split("_")[1]) else: newfaceid = str(uuid.uuid4()) # using now() to get current time current_time = datetime.datetime.now() cv2.imwrite( './unidentified_images/' + newfaceid + '_' + str(current_time) + '.jpg', img) app.logger.debug('Found name - {}'.format(",".join( str(x) for x in face_names))) # # build a response dict to send back to client response = { 'message': 'image received. size={}x{}'.format(img.shape[1], img.shape[0]), 'details': 'Found name - {}'.format(",".join(str(x) for x in face_names)) } # encode response using jsonpickle response_pickled = jsonpickle.encode(response) return Response(response=response_pickled, status=200, mimetype="application/json")