def load_client_dataset(imdb_list):
    dataloader_list = []
    iter_epochs_list = []
    for imdb_name in imdb_list:
        pkl_file = os.path.join(data_cache_path, imdb_name + '_gt_roidb.pkl')

        with open(pkl_file, 'rb') as f:
            roidb = pickle.load(f)

        roidb = filter_roidb(roidb)

        ratio_list, ratio_index = rank_roidb_ratio(roidb)

        train_size = len(roidb)
        print(train_size)
        iters_per_epoch = int(train_size / args.batch_size)
        print('iters_per_epoch: ' + str(iters_per_epoch))
        iter_epochs_list.append(iters_per_epoch)
        sampler_batch = sampler(train_size, args.batch_size)

        dataset = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, imdb_classes, training=True)
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size,
                                                 sampler=sampler_batch, num_workers=args.num_workers)
        dataloader_list.append(dataloader)
    return dataloader_list, iter_epochs_list
Exemple #2
0
                                            phase=args.phase)
            metaclass = metadataset.metaclass

        metaloader = torch.utils.data.DataLoader(metadataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=0,
                                                 pin_memory=True)

    imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdb_name)

    # filter out training samples from novel categories according to shot number
    print('\n before class filtering, there are %d images...' % (len(roidb)))
    if args.dataset != "pascal_voc_0712" and args.phase == 1:
        roidb = filter_class_roidb_flip(roidb, 0, imdb, base_num)
        ratio_list, ratio_index = rank_roidb_ratio(roidb)
        imdb.set_roidb(roidb)

    # filter roidb for the second phase
    if args.phase == 2:
        roidb = filter_class_roidb_flip(roidb, args.shots, imdb, base_num)
        ratio_list, ratio_index = rank_roidb_ratio(roidb)
        imdb.set_roidb(roidb)
    print('after class filtering, there are %d images...\n' % (len(roidb)))

    train_size = len(roidb)
    print('{:d} roidb entries'.format(len(roidb)))
    sys.stdout.flush()

    output_dir = args.save_dir
    if not os.path.exists(output_dir):
Exemple #3
0
    args = parse_args()

    np.random.seed(cfg.RNG_SEED)

    args.cfg_file = "cfgs/{}_ls.yml".format(
        args.net) if args.large_scale else "cfgs/{}.yml".format(args.net)

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    cfg.TRAIN.USE_FLIPPED = False

    test_img_set = TestFolder(args, args.root_path, args.seed, flip=True)
    test_ratio_list, test_ratio_index = rank_roidb_ratio(test_img_set)

    print('{:d} roidb entries'.format(len(test_img_set)))

    classes = ('__background__', 'Car')
    # initilize the network here.
    if args.net == 'vgg16':
        fasterRCNN = vgg16(('__background__', 'Car'),
                           pretrained=True,
                           class_agnostic=args.class_agnostic,
                           is_deconv=True)
    elif args.net == 'res101':
        fasterRCNN = resnet(classes,
                            101,
                            pretrained=False,
                            class_agnostic=args.class_agnostic)
    for a in range(len(lines)):
        save_coco_unflip['image'] ="/home/user/JISOO/R-FCN.pytorch-master/data/coco/images/" + lines[a][:-1]
        save_coco_flip['image'] ="/home/user/JISOO/R-FCN.pytorch-master/data/coco/images/" + lines[a][:-1]
        img = cv2.imread(save_coco_unflip['image'])
        height, width, channels = img.shape
        save_coco_unflip['width'] = width
        save_coco_unflip['height'] = height
        coco_roidb.append(save_coco_unflip)
        coco_flip_roidb.append(save_coco_flip)

    coco_roidb = coco_roidb + coco_flip_roidb

    unlabel_roidb = unlabel_roidb + coco_roidb

    unlabel_ratio_list, unlabel_ratio_index = rank_roidb_ratio(unlabel_roidb)




    print('{:d} roidb entries'.format(len(roidb)))
    print('{:d} roidb entries'.format(len(unlabel_roidb)))
    # print('{:d} roidb entries'.format(len(coco_unlabel_roidb)))

    output_dir = os.path.join(args.save_dir, args.arch, args.net, args.dataset)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    supervised_batch_size = 1
    unsupervised_batch_size = args.batch_size - supervised_batch_size
Exemple #5
0
def bld_train(args, ann_path=None, step=0):

    # print('Train from annotaion {}'.format(ann_path))
    # print('Called with args:')
    # print(args)

    if args.use_tfboard:
        from model.utils.logger import Logger
        # Set the logger
        logger = Logger(
            os.path.join('./.logs', args.active_method,
                         "/activestep" + str(step)))

    if args.dataset == "pascal_voc":
        args.imdb_name = "voc_2007_trainval"
        args.imdbval_name = "voc_2007_test"
        args.set_cfgs = [
            'ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]',
            'MAX_NUM_GT_BOXES', '20'
        ]
    elif args.dataset == "pascal_voc_0712":
        args.imdb_name = "voc_2007_trainval+voc_2012_trainval"
        args.imdbval_name = "voc_2007_test"
        args.set_cfgs = [
            'ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]',
            'MAX_NUM_GT_BOXES', '20'
        ]
    elif args.dataset == "coco":
        args.imdb_name = "coco_2014_train"
        args.imdbval_name = "coco_2014_minival"
        args.set_cfgs = [
            'ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]',
            'MAX_NUM_GT_BOXES', '50'
        ]
    elif args.dataset == "imagenet":
        args.imdb_name = "imagenet_train"
        args.imdbval_name = "imagenet_val"
        args.set_cfgs = [
            'ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]',
            'MAX_NUM_GT_BOXES', '30'
        ]
    elif args.dataset == "vg":
        # train sizes: train, smalltrain, minitrain
        # train scale: ['150-50-20', '150-50-50', '500-150-80', '750-250-150', '1750-700-450', '1600-400-20']
        args.imdb_name = "vg_150-50-50_minitrain"
        args.imdbval_name = "vg_150-50-50_minival"
        args.set_cfgs = [
            'ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]',
            'MAX_NUM_GT_BOXES', '50'
        ]
    elif args.dataset == "voc_coco":
        args.imdb_name = "voc_coco_2007_train+voc_coco_2007_val"
        args.imdbval_name = "voc_coco_2007_test"
        args.set_cfgs = [
            'ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]',
            'MAX_NUM_GT_BOXES', '20'
        ]
    else:
        raise NotImplementedError

    args.cfg_file = "cfgs/{}_ls.yml".format(
        args.net) if args.large_scale else "cfgs/{}.yml".format(args.net)

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    # print('Using config:')
    # pprint.pprint(cfg)
    # np.random.seed(cfg.RNG_SEED)

    # torch.backends.cudnn.benchmark = True
    if torch.cuda.is_available() and not args.cuda:
        print(
            "WARNING: You have a CUDA device, so you should probably run with --cuda"
        )

    # train set = source set + target set
    # -- Note: Use validation set and disable the flipped to enable faster loading.
    cfg.TRAIN.USE_FLIPPED = True
    cfg.USE_GPU_NMS = args.cuda
    # source train set, fully labeled
    #ann_path_source = os.path.join(ann_path, 'voc_coco_2007_train_f.json')
    #ann_path_target = os.path.join(ann_path, 'voc_coco_2007_train_l.json')
    imdb, roidb, ratio_list, ratio_index = combined_roidb(
        args.imdb_name, ann_path=os.path.join(ann_path, 'source'))
    imdb_tg, roidb_tg, ratio_list_tg, ratio_index_tg = combined_roidb(
        args.imdb_name, ann_path=os.path.join(ann_path, 'target'))

    print('{:d} roidb entries for source set'.format(len(roidb)))
    print('{:d} roidb entries for target set'.format(len(roidb_tg)))

    output_dir = args.save_dir + "/" + args.net + "/" + args.dataset + "/" + args.active_method + "/activestep" + str(
        step)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    sampler_batch_tg = None  # do not sample target set

    bs_tg = 4
    dataset_tg = roibatchLoader(roidb_tg, ratio_list_tg, ratio_index_tg, bs_tg, \
                             imdb_tg.num_classes, training=True)

    assert imdb.num_classes == imdb_tg.num_classes

    dataloader_tg = torch.utils.data.DataLoader(dataset_tg,
                                                batch_size=bs_tg,
                                                sampler=sampler_batch_tg,
                                                num_workers=args.num_workers,
                                                worker_init_fn=_rand_fn())

    # initilize the tensor holder here.
    im_data = torch.FloatTensor(1)
    im_info = torch.FloatTensor(1)
    num_boxes = torch.LongTensor(1)
    gt_boxes = torch.FloatTensor(1)
    image_label = torch.FloatTensor(1)
    confidence = torch.FloatTensor(1)

    # ship to cuda
    if args.cuda:
        im_data = im_data.cuda()
        im_info = im_info.cuda()
        num_boxes = num_boxes.cuda()
        gt_boxes = gt_boxes.cuda()
        image_label = image_label.cuda()
        confidence = confidence.cuda()

    # make variable
    im_data = Variable(im_data)
    im_info = Variable(im_info)
    num_boxes = Variable(num_boxes)
    gt_boxes = Variable(gt_boxes)
    image_label = Variable(image_label)
    confidence = Variable(confidence)

    if args.cuda:
        cfg.CUDA = True

    # initialize the network here.
    if args.net == 'vgg16':
        fasterRCNN = vgg16(imdb.classes,
                           pretrained=True,
                           class_agnostic=args.class_agnostic)
    elif args.net == 'res101':
        fasterRCNN = resnet(imdb.classes,
                            101,
                            pretrained=True,
                            class_agnostic=args.class_agnostic)
    elif args.net == 'res50':
        fasterRCNN = resnet(imdb.classes,
                            50,
                            pretrained=True,
                            class_agnostic=args.class_agnostic)
    elif args.net == 'res152':
        fasterRCNN = resnet(imdb.classes,
                            152,
                            pretrained=True,
                            class_agnostic=args.class_agnostic)
    else:
        print("network is not defined")
        raise NotImplementedError

    # initialize the expectation network.
    if args.net == 'vgg16':
        fasterRCNN_val = vgg16(imdb.classes,
                               pretrained=True,
                               class_agnostic=args.class_agnostic)
    elif args.net == 'res101':
        fasterRCNN_val = resnet(imdb.classes,
                                101,
                                pretrained=True,
                                class_agnostic=args.class_agnostic)
    elif args.net == 'res50':
        fasterRCNN_val = resnet(imdb.classes,
                                50,
                                pretrained=True,
                                class_agnostic=args.class_agnostic)
    elif args.net == 'res152':
        fasterRCNN_val = resnet(imdb.classes,
                                152,
                                pretrained=True,
                                class_agnostic=args.class_agnostic)
    else:
        print("network is not defined")
        raise NotImplementedError

    fasterRCNN.create_architecture()
    fasterRCNN_val.create_architecture()

    # lr = cfg.TRAIN.LEARNING_RATE
    lr = args.lr
    # tr_momentum = cfg.TRAIN.MOMENTUM
    # tr_momentum = args.momentum

    params = []
    for key, value in dict(fasterRCNN.named_parameters()).items():
        if value.requires_grad:
            if 'bias' in key:
                params += [{'params': [value], 'lr': lr * (cfg.TRAIN.DOUBLE_BIAS + 1), \
                            'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
            else:
                params += [{
                    'params': [value],
                    'lr': lr,
                    'weight_decay': cfg.TRAIN.WEIGHT_DECAY
                }]

    if args.optimizer == "adam":
        lr = lr * 0.1
        optimizer = torch.optim.Adam(params)
    elif args.optimizer == "sgd":
        optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM)
    else:
        raise NotImplementedError

    if args.resume:
        load_name = os.path.join(
            output_dir,
            'faster_rcnn_{}_{}_{}.pth'.format(args.checksession,
                                              args.checkepoch,
                                              args.checkpoint))
        print("loading checkpoint %s" % (load_name))
        checkpoint = torch.load(load_name)
        args.session = checkpoint['session']
        args.start_epoch = checkpoint['epoch']
        fasterRCNN.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr = optimizer.param_groups[0]['lr']
        if 'pooling_mode' in checkpoint.keys():
            cfg.POOLING_MODE = checkpoint['pooling_mode']
        print("loaded checkpoint %s" % (load_name))

    # expectation model
    print("load checkpoint for expectation model: %s" % args.model_path)
    checkpoint = torch.load(args.model_path)
    fasterRCNN_val.load_state_dict(checkpoint['model'])
    if 'pooling_mode' in checkpoint.keys():
        cfg.POOLING_MODE = checkpoint['pooling_mode']

    fasterRCNN_val = fasterRCNN_val
    fasterRCNN_val.eval()

    if args.mGPUs:
        fasterRCNN = nn.DataParallel(fasterRCNN)
        #fasterRCNN_val = nn.DataParallel(fasterRCNN_val)

    if args.cuda:
        fasterRCNN.cuda()
        fasterRCNN_val.cuda()

    # Evaluation
    # data_iter = iter(dataloader_tg)
    # for target_k in range( int(train_size_tg / args.batch_size)):
    fname = "noisy_annotations.pkl"
    if not os.path.isfile(fname):
        for batch_k, data in enumerate(dataloader_tg):
            im_data.data.resize_(data[0].size()).copy_(data[0])
            im_info.data.resize_(data[1].size()).copy_(data[1])
            gt_boxes.data.resize_(data[2].size()).copy_(data[2])
            num_boxes.data.resize_(data[3].size()).copy_(data[3])
            image_label.data.resize_(data[4].size()).copy_(data[4])
            b_size = len(im_data)
            # expactation pass
            rois, cls_prob, bbox_pred, \
            _, _, _, _, _ = fasterRCNN_val(im_data, im_info, gt_boxes, num_boxes)
            scores = cls_prob.data
            boxes = rois.data[:, :, 1:5]
            if cfg.TRAIN.BBOX_REG:
                # Apply bounding-box regression deltas
                box_deltas = bbox_pred.data
                if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
                    # Optionally normalize targets by a precomputed mean and stdev
                    if args.class_agnostic:
                        box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \
                                     + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda()
                        box_deltas = box_deltas.view(b_size, -1, 4)
                    else:
                        box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \
                                     + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda()
                        # print('DEBUG: Size of box_deltas is {}'.format(box_deltas.size()) )
                        box_deltas = box_deltas.view(b_size, -1,
                                                     4 * len(imdb.classes))

                pred_boxes = bbox_transform_inv(boxes, box_deltas, 1)
                pred_boxes = clip_boxes(pred_boxes, im_info.data, 1)
            else:
                # Simply repeat the boxes, once for each class
                pred_boxes = np.tile(boxes, (1, scores.shape[1]))

            # TODO: data distalliation
            # Choose the confident samples
            for b_idx in range(b_size):
                # fill one confidence
                # confidence.data[b_idx, :] = 1 - (gt_boxes.data[b_idx, :, 4] == 0)
                # resize prediction
                pred_boxes[b_idx] /= data[1][b_idx][2]
                for j in xrange(1, imdb.num_classes):
                    if image_label.data[b_idx, j] != 1:
                        continue  # next if no image label

                    # filtering box outside of the image
                    not_keep = (pred_boxes[b_idx][:, j * 4] == pred_boxes[b_idx][:, j * 4 + 2]) | \
                               (pred_boxes[b_idx][:, j * 4 + 1] == pred_boxes[b_idx][:, j * 4 + 3])
                    keep = torch.nonzero(not_keep == 0).view(-1)
                    # decease the number of pgts
                    thresh = 0.5
                    while torch.nonzero(
                            scores[b_idx, :,
                                   j][keep] > thresh).view(-1).numel() <= 0:
                        thresh = thresh * 0.5
                    inds = torch.nonzero(
                        scores[b_idx, :, j][keep] > thresh).view(-1)

                    # if there is no det, error
                    if inds.numel() <= 0:
                        print('Warning!!!!!!! It should not appear!!')
                        continue

                    # find missing ID
                    missing_list = np.where(gt_boxes.data[b_idx, :, 4] == 0)[0]
                    if (len(missing_list) == 0): continue
                    missing_id = missing_list[0]
                    cls_scores = scores[b_idx, :, j][keep][inds]
                    cls_boxes = pred_boxes[b_idx][keep][inds][:, j *
                                                              4:(j + 1) * 4]
                    cls_dets = torch.cat((cls_boxes, cls_scores.unsqueeze(1)),
                                         1)
                    keep = nms(cls_dets, 0.2)  # Magic number ????
                    keep = keep.view(-1).tolist()
                    sys.stdout.write(
                        'from {} predictions choose-> min({},4) as pseudo label  \r'
                        .format(len(cls_scores), len(keep)))
                    sys.stdout.flush()
                    _, order = torch.sort(cls_scores[keep], 0, True)
                    if len(keep) == 0: continue

                    max_keep = 4
                    for pgt_k in range(max_keep):
                        if len(order) <= pgt_k: break
                        if missing_id + pgt_k >= 20: break
                        gt_boxes.data[b_idx, missing_id +
                                      pgt_k, :4] = cls_boxes[keep][order[
                                          len(order) - 1 - pgt_k]]
                        gt_boxes.data[b_idx, missing_id + pgt_k,
                                      4] = j  # class
                        #confidence[b_idx, missing_id + pgt_k] = cls_scores[keep][order[len(order) - 1 - pgt_k]]
                        num_boxes[b_idx] = num_boxes[b_idx] + 1
                sample = roidb_tg[dataset_tg.ratio_index[batch_k * bs_tg +
                                                         b_idx]]
                pgt_boxes = np.array([
                    gt_boxes[b_idx, x, :4].cpu().data.numpy()
                    for x in range(int(num_boxes[b_idx]))
                ])
                pgt_classes = np.array([
                    gt_boxes[b_idx, x, 4].cpu().data[0]
                    for x in range(int(num_boxes[b_idx]))
                ])
                sample["boxes"] = pgt_boxes
                sample["gt_classes"] = pgt_classes
                # DEBUG
                assert np.array_equal(sample["label"],image_label[b_idx].cpu().data.numpy()), \
                    "Image labels are not equal! {} vs {}".format(sample["label"],image_label[b_idx].cpu().data.numpy())

        #with open(fname, 'w') as f:
        # pickle.dump(roidb_tg, f)
    else:
        pass
        # with open(fname) as f:  # Python 3: open(..., 'rb')
        # roidb_tg = pickle.load(f)

    print("-- Optimization Stage --")
    # Optimization
    print("######################################################l")

    roidb.extend(roidb_tg)  # merge two datasets
    print('before filtering, there are %d images...' % (len(roidb)))
    i = 0
    while i < len(roidb):
        if True:
            if len(roidb[i]['boxes']) == 0:
                del roidb[i]
                i -= 1
        else:
            if len(roidb[i]['boxes']) == 0:
                del roidb[i]
                i -= 1
        i += 1

    print('after filtering, there are %d images...' % (len(roidb)))
    from roi_data_layer.roidb import rank_roidb_ratio
    ratio_list, ratio_index = rank_roidb_ratio(roidb)
    train_size = len(roidb)
    sampler_batch = sampler(train_size, args.batch_size)
    dataset = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, \
                             imdb.num_classes, training=True)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=args.batch_size,
                                             sampler=sampler_batch,
                                             num_workers=args.num_workers,
                                             worker_init_fn=_rand_fn())
    iters_per_epoch = int(train_size / args.batch_size)
    print("Training set size is {}".format(train_size))
    for epoch in range(args.start_epoch, args.max_epochs + 1):
        fasterRCNN.train()

        loss_temp = 0
        start = time.time()
        epoch_start = start

        # adjust learning rate
        if epoch % (args.lr_decay_step + 1) == 0:
            adjust_learning_rate(optimizer, args.lr_decay_gamma)
            lr *= args.lr_decay_gamma

        # one step
        data_iter = iter(dataloader)
        for step in range(iters_per_epoch):
            data = next(data_iter)
            im_data.data.resize_(data[0].size()).copy_(data[0])
            im_info.data.resize_(data[1].size()).copy_(data[1])
            gt_boxes.data.resize_(data[2].size()).copy_(data[2])
            num_boxes.data.resize_(data[3].size()).copy_(data[3])
            image_label.data.resize_(data[4].size()).copy_(data[4])

            #gt_boxes.data = \
            #    torch.cat((gt_boxes.data, torch.zeros(gt_boxes.size(0), gt_boxes.size(1), 1).cuda()), dim=2)
            conf_data = torch.zeros(gt_boxes.size(0), gt_boxes.size(1)).cuda()
            confidence.data.resize_(conf_data.size()).copy_(conf_data)

            fasterRCNN.zero_grad()

            # rois_label = fasterRCNN(im_data, im_info, gt_boxes, num_boxes, confidence)
            rois, cls_prob, bbox_pred, \
            rpn_loss_cls, rpn_loss_box, \
            RCNN_loss_cls, RCNN_loss_bbox, \
            rois_label = fasterRCNN(im_data, im_info, gt_boxes, num_boxes)
            # rois_label = fasterRCNN(im_data, im_info, gt_boxes, num_boxes, confidence)

            loss = rpn_loss_cls.mean() + rpn_loss_box.mean() \
                   + RCNN_loss_cls.mean() + RCNN_loss_bbox.mean()
            loss_temp += loss.data[0]

            # backward
            optimizer.zero_grad()
            loss.backward()
            if args.net == "vgg16":
                clip_gradient(fasterRCNN, 10.)
            optimizer.step()

            if step % args.disp_interval == 0:
                end = time.time()
                if step > 0:
                    loss_temp /= args.disp_interval

                if args.mGPUs:
                    loss_rpn_cls = rpn_loss_cls.mean().data[0]
                    loss_rpn_box = rpn_loss_box.mean().data[0]
                    loss_rcnn_cls = RCNN_loss_cls.mean().data[0]
                    loss_rcnn_box = RCNN_loss_bbox.mean().data[0]
                    fg_cnt = torch.sum(rois_label.data.ne(0))
                    bg_cnt = rois_label.data.numel() - fg_cnt
                else:
                    loss_rpn_cls = rpn_loss_cls.data[0]
                    loss_rpn_box = rpn_loss_box.data[0]
                    loss_rcnn_cls = RCNN_loss_cls.data[0]
                    loss_rcnn_box = RCNN_loss_bbox.data[0]
                    fg_cnt = torch.sum(rois_label.data.ne(0))
                    bg_cnt = rois_label.data.numel() - fg_cnt

                print("[session %d][epoch %2d][iter %4d/%4d] loss: %.4f, lr: %.2e" \
                      % (args.session, epoch, step, iters_per_epoch, loss_temp, lr))
                print("\t\t\tfg/bg=(%d/%d), time cost: %f" %
                      (fg_cnt, bg_cnt, end - start))
                print("\t\t\trpn_cls: %.4f, rpn_box: %.4f, rcnn_cls: %.4f, rcnn_box %.4f" \
                      % (loss_rpn_cls, loss_rpn_box, loss_rcnn_cls, loss_rcnn_box))
                if args.use_tfboard:
                    info = {
                        'loss': loss_temp,
                        'loss_rpn_cls': loss_rpn_cls,
                        'loss_rpn_box': loss_rpn_box,
                        'loss_rcnn_cls': loss_rcnn_cls,
                        'loss_rcnn_box': loss_rcnn_box
                    }
                    for tag, value in info.items():
                        logger.scalar_summary(tag, value, step)

                    images = []
                    for k in range(args.batch_size):
                        image = draw_bounding_boxes(
                            im_data[k].data.cpu().numpy(),
                            gt_boxes[k].data.cpu().numpy(),
                            im_info[k].data.cpu().numpy(),
                            num_boxes[k].data.cpu().numpy())
                        images.append(image)
                    logger.image_summary("Train epoch %2d, iter %4d/%4d" % (epoch, step, iters_per_epoch), \
                                          images, step)
                loss_temp = 0
                start = time.time()
                if False:
                    break

        if args.mGPUs:
            save_name = os.path.join(
                output_dir,
                'faster_rcnn_{}_{}_{}.pth'.format(args.session, epoch, step))
            save_checkpoint(
                {
                    'session': args.session,
                    'epoch': epoch + 1,
                    'model': fasterRCNN.module.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'pooling_mode': cfg.POOLING_MODE,
                    'class_agnostic': args.class_agnostic,
                }, save_name)
        else:
            save_name = os.path.join(
                output_dir,
                'faster_rcnn_{}_{}_{}.pth'.format(args.session, epoch, step))
            save_checkpoint(
                {
                    'session': args.session,
                    'epoch': epoch + 1,
                    'model': fasterRCNN.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'pooling_mode': cfg.POOLING_MODE,
                    'class_agnostic': args.class_agnostic,
                }, save_name)
        print('save model: {}'.format(save_name))

        epoch_end = time.time()
        print('Epoch time cost: {}'.format(epoch_end - epoch_start))

    print('finished!')