def postprocess(self, bounding_boxes, probabilities, ratio):#300519 defined explicitly all_dets = [] bboxes = bounding_boxes probs = probabilities for key in bboxes: bbox = np.array(bboxes[key]) new_boxes, new_probs = roi_helpers.non_max_suppression_fast(bbox, np.array(probs[key]), overlap_thresh=0.5) for jk in range(new_boxes.shape[0]): (x1, y1, x2, y2) = new_boxes[jk, :] coord_list = list(self.get_real_coordinates(ratio, x1, y1, x2, y2)) # 220519# addded self. to call class function all_dets.append((key, 100 * new_probs[jk], coord_list)) return all_dets
tw /= C.classifier_regr_std[2] th /= C.classifier_regr_std[3] x, y, w, h = roi_helpers.apply_regr(x, y, w, h, tx, ty, tw, th) except: pass bboxes[cls_name].append([C.rpn_stride*x, C.rpn_stride*y, C.rpn_stride*(x+w), C.rpn_stride*(y+h)]) probs[cls_name].append(np.max(P_cls[0, ii, :])) all_dets = [] for key in bboxes: bbox = np.array(bboxes[key]) print("ok") new_boxes, new_probs = roi_helpers.non_max_suppression_fast(bbox, np.array(probs[key]), overlap_thresh=0.5) for jk in range(new_boxes.shape[0]): (x1, y1, x2, y2) = new_boxes[jk,:] (real_x1, real_y1, real_x2, real_y2) = get_real_coordinates(ratio, x1, y1, x2, y2) print(real_x1) print(real_x2) print(real_y1) print(real_y2) cv2.rectangle(img,(real_x1, real_y1), (real_x2, real_y2), (int(class_to_color[key][0]), int(class_to_color[key][1]), int(class_to_color[key][2])),2) textLabel = '{}: {}'.format(key,int(100*new_probs[jk])) all_dets.append((key,100*new_probs[jk])) (retval,baseLine) = cv2.getTextSize(textLabel,cv2.FONT_HERSHEY_COMPLEX,1,1)