def inference_augment_t_filter(images, size): # augment on temporal domain split_dim = 2 # split the temporal domain and rearrange them to repeat time domain input_image_list = split_eeg.split_eeg_signal_axes(images, split_dim=split_dim) # 2 represents temporal domain input_image_length = len(input_image_list) augment, _ = concat_eeg.conv_eeg_signal_time(input_image_list, np.arange(0, input_image_length), size, 2) _print_tensor_size(augment) return augment
def inference_augment_t_filter(images, size): # augment on temporal domain split_dim = 2 # split the temporal domain and rearrange them to repeat time domain input_image_list = split_eeg.split_eeg_signal_axes( images, split_dim=split_dim) # 2 represents temporal domain input_image_length = len(input_image_list) augment, _ = concat_eeg.conv_eeg_signal_time( input_image_list, np.arange(0, input_image_length), size, 2) _print_tensor_size(augment) return augment
def inference_augment_s_rep_t_filter(images): # augment on spatial domain augment = deconv_augment_s_filter(images) # augment on temporal domain split_dim = 2 # split the temporal domain and rearrange them to repeat time domain input_image_list = split_eeg.split_eeg_signal_axes(augment, split_dim=split_dim) # 2 represents temporal domain input_image_length = len(input_image_list) augment, _ = concat_eeg.conv_eeg_signal_time( input_image_list, np.arange(0, input_image_length), KERNEL_SIZE, 2, is_rep=True ) _print_tensor_size(augment) return augment
def inference_augment_s_rep_t_filter(images): # augment on spatial domain augment = inference_augment_s_filter(images) # augment on temporal domain split_dim = 2 # split the temporal domain and rearrange them to repeat time domain input_image_list = split_eeg.split_eeg_signal_axes(augment, split_dim=split_dim) # 2 represents temporal domain input_image_length = len(input_image_list) augment, _ = concat_eeg.conv_eeg_signal_time(input_image_list, np.arange(0, input_image_length), KERNEL_SIZE, 2, is_rep=True) _print_tensor_size(augment) return augment