def _collect_test_stats(test_function: str, N: int, noise_std: float, random: bool, gps: Tuple[str, ...], M: int): store = store_path(test_function, N, noise_std, random, M) for k in range(K): fold = data.Fold(store, k) for gp in gps: gp_path = fold.dir / gp frame = _test_stats(k, gp_path)
def predict_roms(M: int, N: int, random: bool, noisy: bool): store_name = 'sin.u1.' CDF_scale = 2 * pi CDF_loc = pi function_with_parameters = function.CallableWithParameters( function=function.ishigami, parameters={ 'a': 0, 'b': 0 }) store_name = store_name + '{0:d}.{1:d}'.format(N, M) store_name += '.random' if random else '.rom' noise_std = 0.0001 if noisy else 0 store = data.Store(store_dir(store_name, noise_std, CDF_scale), data.Store.InitMode.READ_META_ONLY) fold = data.Fold(store, 0) rom = model.gpy_.ROM.from_ROM(fold=fold, name='rom', suffix='.test.full') model_theta = rom.sobol.parameters_read.Theta data_theta = function.linear_matrix_from_meta(store) pre_function_with_parameters = (function.CallableWithParameters( function=function.linear, parameters={'matrix': data_theta}) if random else None) test_store = scalar_function_of_normal( store_name=store_name + "\\test", N=N, M=M, X_std=1.0, noise_std=noise_std, CDF_scale=CDF_scale, CDF_loc=CDF_loc, pre_function_with_parameters=pre_function_with_parameters, function_with_parameters=function_with_parameters) fold.set_test_data(df=test_store.data.df) rom.sobol.gp.test() result = matmul(model_theta, data_theta.T) print(result)
def _collect_std(test_function: str, N: int, noise_std: float, random: bool, M: int): store = data.Store(store_path(test_function, N, noise_std, random, M)) destination = store.dir / "results" shutil.rmtree(destination, ignore_errors=True) destination.mkdir(mode=0o777, parents=True, exist_ok=False) result = 0.0 for k in range(K): fold = data.Fold(store, k) result += fold.standard.df.iloc[-1, -1]/K savetxt(fname=(destination / "std.csv"), X=atleast_2d(result), delimiter=",")
def _collect_test_stats(M, N, function_name, random, noisy): noisy_str = NORMAL_CDF_DIR if noisy else NOISELESS_DIR source_store = store_dir(M, N, function_name, random, noisy) for k in range(FOLDS): fold = data.Fold(source_store, k) gp_dir = fold.dir / "ard" frame = data.Frame( gp_dir / "test_stats.csv", _test_stats(k, data.Frame(gp_dir / "__test__.csv").df.copy()))
def _collect_test_stats(test_function: str, N: int, noise_std: float, random: bool, gp: str, M: int = 5): source_store = store_path(test_function, N, noise_std, random, M) for k in range(K): fold = data.Fold(source_store, k) gp_dir = fold.dir / gp frame = data.Frame( gp_dir / "test_stats.csv", _test_stats(k, data.Frame(gp_dir / "__test__.csv").df.copy()))
def test_random(test_fuction: str, N: int, noise_std: float, M: int = 5, K: int = 2 ): random = True name = 'rbf' gp_optimizer_options = {'optimizer': 'bfgs', 'max_iters': 5000, 'gtol': 1E-16} kernel_parameters = model.gpy_.Kernel.ExponentialQuadratic.Parameters(lengthscale=full((1, 1), 2.5**(M/5), dtype=float)) parameters = model.gpy_.GP.DEFAULT_PARAMETERS._replace(kernel=kernel_parameters, e_floor=1E-6, e=0.003) CDF_scale = 2 * pi CDF_loc = pi if test_fuction == 'sin.1': function_with_parameters = function.CallableWithParameters(function.ishigami, parameters={'a': 0.0, 'b': 0.0}) elif test_fuction == 'sin.2': function_with_parameters = function.CallableWithParameters(function.ishigami, parameters={'a': 2.0, 'b': 0.0}) elif test_fuction == 'ishigami': function_with_parameters = function.callable_with_parameters(function.ishigami) else: CDF_scale = 1.0 CDF_loc = 0.0 function_with_parameters = function.CallableWithParameters(function.sobol_g, parameters={'m_very_important': 2, 'm_important': 3, 'm_unimportant': 4}) store_name = test_fuction + '.{0:d}.{1:.3f}.{2:d}'.format(M, noise_std, N) if random: lin_trans = ortho_group.rvs(M) pre_function_with_parameters = function.CallableWithParameters(function=function.linear, parameters={'matrix': lin_trans}) store_name += '.random' else: pre_function_with_parameters = None store_name += '.rom' store_name = BASE_PATH / store_name store = scalar_function_of_normal(store_name=store_name, N=N, M=M, X_std=1.0, noise_std=noise_std, CDF_scale=CDF_scale, CDF_loc=CDF_loc, pre_function_with_parameters=pre_function_with_parameters, function_with_parameters=function_with_parameters) # lin_trans = transpose(lin_trans) savetxt(store.dir / "InverseRotation.csv", lin_trans) data.Fold.into_K_folds(parent=store, K=K, shuffled_before_folding=False, standard=data.Store.Standard.mean_and_std, replace_empty_test_with_data_=True) model.run.GPs(module=model.run.Module.GPY_, name=name, store=store, M_Used=-1, parameters=parameters, optimize=True, test=True, sobol=True, optimizer_options=gp_optimizer_options) model.run.GPs(module=model.run.Module.GPY_, name=name, store=store, M_Used=-1, parameters=None, optimize=True, test=True, sobol=True, optimizer_options=gp_optimizer_options, make_ard=True) sobol_options = {'semi_norm': model.base.Sobol.SemiNorm.DEFAULT_META, 'N_exploit': 3, 'N_explore': 4096, 'options': {'gtol': 1.0E-16}} for k in range(K): sobol = model.gpy_.Sobol.from_GP(data.Fold(store, k), 'rbf.ard', 'rbf.ard.derotated') for sobol.m in reversed(range(M)): sobol.Theta_old = lin_trans sobol.write_parameters(sobol.Parameters(Mu=sobol.Mu, Theta=sobol.Theta, D=sobol.Tensor3AsMatrix(sobol.D), S1=None, S=sobol.Tensor3AsMatrix(sobol.S)))
def test_random3(test_fuction: str, N: int, noise_std: float, M: int = 5, K: int = 2 ): random = True name = 'derotated.rbf' gp_optimizer_options = {'optimizer': 'bfgs', 'max_iters': 5000, 'gtol': 1E-16} kernel_parameters = model.gpy_.Kernel.ExponentialQuadratic.Parameters(lengthscale=full((1, 1), 2.5**(M/5), dtype=float)) parameters = model.gpy_.GP.DEFAULT_PARAMETERS._replace(kernel=kernel_parameters, e_floor=1E-6, e=0.003) store_name = test_fuction + '.{0:d}.{1:.3f}.{2:d}'.format(M, noise_std, N) store_name += '.random' store_name = BASE_PATH / store_name store = data.Store(store_name) lin_trans = loadtxt(store.dir / "InverseRotation.csv") for k in range(K): fold = data.Fold(store, k) replace_X_with_U(fold, transpose(lin_trans)) model.run.GPs(module=model.run.Module.GPY_, name=name, store=store, M_Used=-1, parameters=parameters, optimize=True, test=True, sobol=True, optimizer_options=gp_optimizer_options) model.run.GPs(module=model.run.Module.GPY_, name=name, store=store, M_Used=-1, parameters=None, optimize=True, test=True, sobol=True, optimizer_options=gp_optimizer_options, make_ard=True) sobol_options = {'semi_norm': model.base.Sobol.SemiNorm.DEFAULT_META, 'N_exploit': 3, 'N_explore': 4096, 'options': {'gtol': 1.0E-16}}
def _run_test(M, N, function_name, random, noisy): noisy_str = NORMAL_CDF_DIR if noisy else NOISELESS_DIR source_store = store_dir(M, N, function_name, random, noisy) Mu = choose_Mu(function_name) kernel_parameters = model.gpy_.Kernel.ExponentialQuadratic.Parameters( lengthscale=full((1, Mu), 0.2, dtype=float)) parameters = model.gpy_.GP.DEFAULT_PARAMETERS._replace( kernel=kernel_parameters, e_floor=1E-5, e=1E-10) for k in range(FOLDS): fold = data.Fold(source_store, k, Mu) dst = fold.dir / "rom.reduced" if dst.exists(): shutil.rmtree(dst) shutil.copytree(src=fold.dir / "rom.optimized", dst=dst) gp = model.gpy_.GP(fold, "rom.reduced", parameters) gp.optimize(model.gpy_.GP.DEFAULT_OPTIMIZER_OPTIONS) frame = data.Frame(gp.dir / "test_stats.csv", _test_stats(k, gp.test().df.copy()))
def predict(gb_path: Union[str, Path], inputs: NP.Array) -> Tuple[NP.Vector, NP.Vector]: """ Prediction using a GaussianBundle. Args: gb_path: Path to a model.GaussianBundle. The extension of this filename is the number of input dimensions M. An extension of 0 or a missing extension means full order, taking M from the training data. inputs: An (N,M) numpy array, consisting of N test inputs, each of dimension M. Returns: A pair (predictive_mean, predictive_std) of (N,1) numpy arrays. """ gb_path = Path(gb_path) gb_name = gb_path.name Xs_taken = int(gb_path.suffix[1:]) fold_dir = gb_path.parent k = int(fold_dir.suffix[1:]) fold = data.Fold(fold_dir.parent, k, Xs_taken) if Xs_taken != inputs.shape[1]: raise IndexError( "The gp you have chosen uses {0:d} dimensional inputs".format( fold.M)) gb = model.gpy_.GaussianBundle(fold, gb_name, reset_log_likelihood=False) return gb.predict(inputs)
def linear_transformation(model_dir: Path) -> NP.Matrix: with open(model_dir / "__meta__.json", mode='r') as file: meta = load(file) function_with_parameters = meta['origin']['functions_with_parameters'][ 0].split("; matrix=") if len(function_with_parameters) > 1: function_with_parameters = eval(function_with_parameters[-1][:-1]) return array(function_with_parameters) else: return eye(meta['data']['M'], dtype=float) if __name__ == '__main__': store = data.Store((BASE_PATH / NOISELESS_DIR) / "sin.u1.5000.5.random", data.Store.InitMode.READ_META_ONLY) fold = data.Fold(store, 0) rom = model.gpy_.ROM.from_ROM(fold=fold, name='rom', suffix='.test.full') model_theta = rom.sobol.parameters_read.Theta data_theta = function.linear_matrix_from_meta(store) print(model_theta) print(data_theta) """ def rename(dir_: Path): for p in dir_.iterdir(): if p.is_dir(): if p.name == "rom..optimized": p.replace(p.parent / "rom.optimized") else: rename(p) """ """