Exemple #1
0
def matchImages(original, image_to_compare, useFlann=False):

    if useRootSIFT:
        # extract RootSIFT descriptors
        #print('Using RootSIFT')
        kps = None
        rs = RootSIFT()
        kp_1, desc_1 = rs.compute(original, kps)
        kp_2, desc_2 = rs.compute(image_to_compare, kps)
    else:
        sift = cv2.xfeatures2d.SIFT_create()
        kp_1, desc_1 = sift.detectAndCompute(original, None)
        kp_2, desc_2 = sift.detectAndCompute(image_to_compare, None)

    if useFlann:
        FLANN_INDEX_KDTREE = 0
        index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
        search_params = dict(checks=50)
        print('Using Flann Matcher')
        matcher = cv2.FlannBasedMatcher(index_params, search_params)
    else:
        print('Using Brute Force Matcher')
        matcher = cv2.DescriptorMatcher_create("BruteForce")

    matches = matcher.knnMatch(desc_1, desc_2, k=2)

    good_points = []
    for m, n in matches:
        if m.distance < LRatio * n.distance:
            good_points.append(m)
    print(len(good_points))
    result = cv2.drawMatches(original, kp_1, image_to_compare, kp_2,
                             good_points, None)
    #  cv2.imshow("result", cv2.resize(result,(800,600)))
    return (good_points, result)
Exemple #2
0
def getRootSIFT(gray):
    sift = cv2.xfeatures2d.SIFT_create()
    kp, des = sift.detectAndCompute(gray, None)
    # extract RootSIFT descriptors
    rs = RootSIFT()
    kp, des = rs.compute(gray, kp)
    return kp, des
Exemple #3
0
    def detectAndDescribe(self, image, useRootSIFT=False):
        # convert the image to grayscale
        #		gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # check to see if we are using OpenCV 3.X
        if self.isv3:
            if useRootSIFT:
                # extract RootSIFT descriptors
                #				print('Using RootSIFT')
                kps = None
                rs = RootSIFT()
                (kps, features) = rs.compute(image, kps)
            else:
                # detect and extract features from the image
                descriptor = cv2.xfeatures2d.SIFT_create()
                #				descriptor = cv2.xfeatures2d.SURF_create()
                #				descriptor = cv2.ORB_create()
                (kps, features) = descriptor.detectAndCompute(image, None)

        # otherwise, we are using OpenCV 2.4.X
        else:
            # detect keypoints in the image
            detector = cv2.FeatureDetector_create("SIFT")
            kps = detector.detect(image)

            # extract features from the image
            extractor = cv2.DescriptorExtractor_create("SIFT")
            (kps, features) = extractor.compute(image, kps)

        # convert the keypoints from KeyPoint objects to NumPy
        # arrays
        kps = np.float32([kp.pt for kp in kps])

        # return a tuple of keypoints and features
        return (kps, features)
def get_local_features(params, image):

    # detect Difference of Gaussian keypoints in the image
    detector = cv2.FeatureDetector_create(params["keypoint_type"])
    kps = detector.detect(image)

    # extract RootSIFT descriptors
    rs = RootSIFT()
    (kps, descs) = rs.compute(image, kps)

    # Devolvemos los descriptores para una imagen
    return descs
Exemple #5
0
from __future__ import print_function
from rootsift import RootSIFT
import argparse
import cv2
import imutils

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the image")
args = vars(ap.parse_args())

# load the input image, convert it to grayscale
image = cv2.imread(args["image"])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# extract local invariant descriptors
extractor = RootSIFT()
(kps, descs) = extractor.compute(gray, None)

# show the shape of the keypoints and local invariant descriptors array
print("[INFO] # of keypoints detected: {}".format(len(kps)))
print("[INFO] feature vector shape: {}".format(descs.shape))
# it to grayscale
image = cv2.imread("all_souls_000035.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# detect Difference of Gaussian keypoints in the image
detector = cv2.FeatureDetector_create("SIFT")
kps = detector.detect(image)

# extract normal SIFT descriptors
extractor = cv2.DescriptorExtractor_create("SIFT")
(kps_sift, descs_sift) = extractor.compute(image, kps)
print "SIFT: kps=%d, descriptors=%s " % (len(kps_sift), descs_sift.shape)

# extract RootSIFT descriptors
rs = RootSIFT()
(kps_rootsift, descs_rootsift) = rs.compute(image, kps)
print "RootSIFT: kps=%d, descriptors=%s " % (len(kps_rootsift), descs_rootsift.shape)

pylab.figure()
rgbImage = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

img_SIFT = cv2.drawKeypoints(rgbImage,kps_sift,None,(255,0,255),4)
pylab.gray()
pylab.subplot(2,1,1)
pylab.imshow(img_SIFT)
pylab.axis('off')

img_rootsift = cv2.drawKeypoints(rgbImage,kps_rootsift,None,(255,0,255),4)
pylab.gray()
pylab.subplot(2,1,2)
pylab.imshow(img_rootsift)
Exemple #7
0
# USAGE
# python driver.py

# import the necessary packages
from rootsift import RootSIFT
import cv2

# load the image we are going to extract descriptors from and convert
# it to grayscale
image = cv2.imread("example.png")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# detect Difference of Gaussian keypoints in the image
detector = cv2.FeatureDetector_create("SIFT")
kps = detector.detect(gray)

# extract normal SIFT descriptors
extractor = cv2.DescriptorExtractor_create("SIFT")
(kps, descs) = extractor.compute(gray, kps)
print("SIFT: kps=%d, descriptors=%s " % (len(kps), descs.shape))

# extract RootSIFT descriptors
rs = RootSIFT()
(kps, descs) = rs.compute(gray, kps)
print("RootSIFT: kps=%d, descriptors=%s " % (len(kps), descs.shape))
Exemple #8
0
# import the necessary packages
from rootsift import RootSIFT
import cv2
 
# load the image we are going to extract descriptors from and convert
# it to grayscale
image = cv2.imread("example.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 
# detect Difference of Gaussian keypoints in the image
detector = cv2.FeatureDetector_create("SIFT")
kps = detector.detect(image)
 
# extract normal SIFT descriptors
extractor = cv2.DescriptorExtractor_create("SIFT")
(kps, descs) = extractor.compute(image, kps)
print "SIFT: kps=%d, descriptors=%s " % (len(kps), descs.shape)
 
# extract RootSIFT descriptors
rs = RootSIFT()
(kps, descs) = rs.compute(image, kps)
print "RootSIFT: kps=%d, descriptors=%s " % (len(kps), descs.shape)
# import the necessary packages
from rootsift import RootSIFT
import cv2

# load the image we are going to extract descriptors from and convert
# it to grayscale
image = cv2.imread("example.png")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# detect Difference of Gaussian keypoints in the image
detector = cv2.FeatureDetector_create("SIFT")
kps = detector.detect(image)

# extract normal SIFT descriptors
extractor = cv2.DescriptorExtractor_create("SIFT")
(kps, descs) = extractor.compute(image, kps)
print "SIFT: kps=%d, descriptors=%s " % (len(kps), descs.shape)

# extract RootSIFT descriptors
rs = RootSIFT()
(kps, descs) = rs.compute(image, kps)
print "RootSIFT: kps=%d, descriptors=%s " % (len(kps), descs.shape)
 
# detect Difference of Gaussian keypoints in the image
detector = cv2.xfeatures2d.SIFT_create()
kps1 = detector.detectAndCompute(gray1, None)
kps2 = detector.detectAndCompute(gray2, None)
 
# extract normal SIFT descriptors
extractor = cv2.xfeatures2d.SIFT_create()
(kps1, descs1) = extractor.detectAndCompute(gray1, None)
(kps2, descs2) = extractor.detectAndCompute(gray2, None)
print "SIFT: kps=%d, descriptors=%s " % (len(kps1), descs1.shape)
print "SIFT: kps=%d, descriptors=%s " % (len(kps2), descs2.shape)
 
# extract RootSIFT descriptors
rs = RootSIFT()
(kps1, descs1, kps2, descs2) = rs.compute(gray1, kps1, gray2, kps2)

print "RootSIFT: kps=%d, descriptors=%s " % (len(kps1), descs1.shape) 
print "RootSIFT: kps=%d, descriptors=%s " % (len(kps2), descs2.shape)
print "========================================================"
print "Slika poklapanja:"
print "========================================================"

# FLANN parameters
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50)   # or pass empty dictionary

flann = cv2.FlannBasedMatcher(index_params,search_params)

matches = flann.knnMatch(descs1,descs2,k=2)
# extract RootSIFT descriptors
rs = RootSIFT()
#descriptor = cv2.xfeatures2d.SIFT_create()
matcher = cv2.DescriptorMatcher_create("BruteForce")

objKeyPtList = []
objFtrList = []

for obj in object_list:
    imageA = cv2.imread(obj)
    #  cv2.imshow("Image A", imageA)

    grayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY)

    # detect and extract features from the image
    (kps1, featuresA) = rs.compute(grayA, None)
    #  (kps1, featuresA) = descriptor.detectAndCompute(grayA, None)

    if type(featuresA) != type(None):
        kpsA = np.float32([kp.pt for kp in kps1])
        objKeyPtList.append(kpsA)
        objFtrList.append(featuresA)

print('Total objects found:', len(objFtrList))

# grab a reference to the video file
vs = cv2.VideoCapture(args["video"])

# allow the camera or video file to warm up
time.sleep(2.0)
def readFromFile(testImagePath):
  imgTest = cv2.imread(testImagePath)

  imgPath = 'data_images'
  testImagePath = 'test_images'

  detector = cv2.xfeatures2d.SIFT_create() 	#inicijalizacija detektora za kljucne tacke    
  extractor = cv2.xfeatures2d.SIFT_create()	#inicijalizacija ekstraktora preko koga cemo uzimati osobine slike - deskriptor

  rs = RootSIFT()

  #======================================================================
  #funkcija koja nalazi broj pozitivnih preklapanja kljucnih tacaka

  def findPosMatches(dscTest, dscData):
    pozPoklapanja = []
    
    # FLANN parameters
    FLANN_INDEX_KDTREE = 0
    index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
    search_params = dict(checks = 100)

    flann = cv2.FlannBasedMatcher(index_params,search_params)
    matches = flann.knnMatch(dscTest,dscData,k=2)
    
    # Need to draw only good matches, so create a mask
    matchesMask = [[0,0] for i in xrange(len(matches))]
    
    #pozPoklapanja = []
    # ratio test as per Lowe's paper
    for i,(m,n) in enumerate(matches):
      if m.distance < 0.7*n.distance:
	matchesMask[i]=[1,0]
	pozPoklapanja.append(len(matchesMask[i]))
    x = len(pozPoklapanja)
	
    return x, matches, matchesMask
  #======================================================================    
  
  #obrada ucitane slike
  gray2 = cv2.cvtColor(imgTest, cv2.COLOR_BGR2GRAY)
  kptsTest = detector.detectAndCompute(gray2, None)
  (kptsTest, dscTest) = extractor.detectAndCompute(gray2, None)
  (kptsTest, dscTest) = rs.compute(gray2, kptsTest)

  #  inicijalizacija osnovnih parametara u koje cu smestati podatke one slike
  #  koja ima najvise pozitivnih poklapanja kljucnih tacaka
  maxBrojPozPoklapanja = 0
  kptsDataBest = []
  poklapanja = []
  slikaData = imgTest
  matchesMask = []

  #obrada slika iz dataseta

  for imgPath in glob.glob(folderPath + '/*.jpg'):
    imgData = cv2.imread(imgPath)
    gray1 = cv2.cvtColor(imgData, cv2.COLOR_BGR2GRAY)
    kptsData = detector.detectAndCompute(gray1, None)
    (kptsData, dscData) = extractor.detectAndCompute(gray1, None)
    (kptsData, dscData) = rs.compute(gray1, kptsData)

    brPozPoklapanjaSlike, matchesData, matchesMaskData = findPosMatches(dscTest, dscData)

    if brPozPoklapanjaSlike > maxBrojPozPoklapanja:	#ukoliko slika ima najvise pozitivnih poklapanja
      maxBrojPozPoklapanja = brPozPoklapanjaSlike		#ona postaje glavni kandidat za "pobednika"
      poklapanja = matchesData
      slikaData = imgData
      kptsDataBest = kptsData
      matchesMask = matchesMaskData

  print "Slika poklapanja:"

  draw_params = dict(matchColor = (0,255,0),
		    singlePointColor = (255,0,0),
		    matchesMask = matchesMask,
		    flags = 0)

  img3 = cv2.drawMatchesKnn(imgTest,kptsTest,slikaData,kptsDataBest,poklapanja,None,**draw_params)

  plt.imshow(img3,),plt.show()
  
  return img3, slikaData
# it to grayscale
image = cv2.imread("all_souls_000035.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# detect Difference of Gaussian keypoints in the image
detector = cv2.FeatureDetector_create("SIFT")
kps = detector.detect(image)

# extract normal SIFT descriptors
extractor = cv2.DescriptorExtractor_create("SIFT")
(kps_sift, descs_sift) = extractor.compute(image, kps)
print "SIFT: kps=%d, descriptors=%s " % (len(kps_sift), descs_sift.shape)

# extract RootSIFT descriptors
rs = RootSIFT()
(kps_rootsift, descs_rootsift) = rs.compute(image, kps)
print "RootSIFT: kps=%d, descriptors=%s " % (len(kps_rootsift),
                                             descs_rootsift.shape)

pylab.figure()
rgbImage = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

img_SIFT = cv2.drawKeypoints(rgbImage, kps_sift, None, (255, 0, 255), 4)
pylab.gray()
pylab.subplot(2, 1, 1)
pylab.imshow(img_SIFT)
pylab.axis('off')

img_rootsift = cv2.drawKeypoints(rgbImage, kps_rootsift, None, (255, 0, 255),
                                 4)
pylab.gray()