Exemple #1
0
def find_lines(emotion: str, rhyming_partials: List[Dict]):
    """
    Creates combinations of ending lines (3rd and 4th) from some knowledgebase.
    """

    data = read_json_file("data/bible_kjv_wrangled.json")

    keys, last_words_of_sentences = extract_keys_sentences_last_words(data)

    if DEBUG:
        print(
            f'\nchoose_lines,\n\tkeys length {len(keys)}'
            f'\n\n\tlength last words of sentences {len(last_words_of_sentences)}'
        )
    ret = []
    for partial in rhyming_partials:
        for word in partial['rhymes']:
            rhyming_sentences = []
            indices = [
                i for i, x in enumerate(last_words_of_sentences) if x == word
            ]
            if indices:
                for ix in indices:
                    rhyming_sentences.append(keys[ix])

            if DEBUG:
                print(f'rhyming sentences in choose lines {rhyming_sentences}')
            for generated_partial in generate_partials(data, partial,
                                                       rhyming_sentences):
                ret.append(generated_partial)
    return ret
def train_model():
    data = read_json_file("data/bible_kjv_wrangled.json")
    sentences = list(data.values())
    # Do we want everything in lowercase?
    sentences = [s.lower() for s in sentences]

    print("-----------Tokenize corpus-------------")
    tokenized_sentences = []
    for s in sentences:
        tokens = nltk.word_tokenize(s)
        tokenized_sentences.append(tokens)

    for s in abc.sents():
        s = list(filter(lambda x: x.isalpha() and len(x) > 1, s))
        s = [x.lower() for x in s]  # Do we want everything in lowercase?
        tokenized_sentences.append(s)

    for s in brown.sents():
        s = list(filter(lambda x: x.isalpha() and len(x) > 1, s))
        s = [x.lower() for x in s]  # Do we want everything in lowercase?
        tokenized_sentences.append(s)

    print("------------TRAINING FASTTEXT-----------")

    model = FastText(tokenized_sentences,
                     size=100,
                     window=5,
                     min_count=5,
                     workers=4,
                     sg=1)

    print("----------------DONE-------------")
    return model
Exemple #3
0
def find_lines(emotion: str, rhyming_partials: List[Dict]):
    """
    Creates combinations of ending lines (3rd and 4th) from some knowledgebase.
    """

    data = read_json_file("data/bible_kjv_wrangled.json")
    
    # There probably is a better/faster way to do this using dictionaries but I dont know how rn
    keys = []
    sentences = []
    last_word_of_sentences = []
    
    for key, value in data.items():
        keys.append(key)
        sentences.append(value)
        last_word_of_sentence = value.translate(str.maketrans('', '', string.punctuation))
        last_word_of_sentence = last_word_of_sentence.strip().split(' ')[-1]
        last_word_of_sentences.append(last_word_of_sentence.lower())

    
 

    ret = []
    for partial in rhyming_partials:
        for word in partial['rhymes']:
            rhyming_sentences = []
            indices = [i for i, x in enumerate(last_word_of_sentences) if x == word]
            if indices:
                for ix in indices:
                    rhyming_sentences.append(keys[ix])



            third = data[random.choice(list(data))]

            # selects rhyming sentence if there is at least one, else select random sentence as before
            if rhyming_sentences:
                fourth = data[random.choice(rhyming_sentences)]
            else:
                continue
            
            new_partial = partial.copy()
            new_partial['rest'] = (third, fourth)
            ret.append(new_partial)
    return ret
Exemple #4
0
            should be a dictionary holding at least 'evaluation' keyword with float value.

        """
        print("Group Roses create with input args: {} {}".format(
            emotion, word_pairs))
        poems = self.evaluate(emotion, word_pairs,
                              self.generate(emotion, word_pairs))
        poems.sort(key=lambda x: x[1])
        return list(
            map(lambda x: ('\n'.join(x[0]), {
                'evaluation': x[1]
            }), poems[0:number_of_artifacts]))


if __name__ == '__main__':
    poem_creator = PoemCreator()
    parser = argparse.ArgumentParser()
    parser.add_argument('emotion', help='Emotion for poem.')
    parser.add_argument('word_pairs',
                        help='File for word pairs. Json list of lists')
    parser.add_argument('num_poems',
                        help='Number of poems to output.',
                        type=int)
    args = parser.parse_args()
    word_pairs = read_json_file(DATA_FOLDER + args.word_pairs)
    word_pairs = [tuple(word_pair) for word_pair in word_pairs]
    for poem in poem_creator.create(args.emotion, [('human', 'boss'),
                                                   ('animal', 'legged')],
                                    args.num_poems):
        print(f'----Poem evaluated {poem[1]}\n{poem[0]}\n----')