def plot(hist_type): plt.figure(figsize=(24, 16)) i = 0 for num_bins in [5, 10, 30, 50]: i += 1 print("Computing %s with %d bins..." % (hist_type, num_bins)) plt.subplot(2, 2, i) plt.subplots_adjust(hspace=0.5) plt.title(str(num_bins) + " bins", {'fontsize': 24}) rpc_module.compare_dist_rpc(model_images, query_images, ['chi2', 'intersect', 'l2'], hist_type, num_bins, ['r', 'g', 'b']) # plt.savefig("./plots/plt_" + hist_type + ".png") plt.show()
model_images = fp.readlines() model_images = [x.strip() for x in model_images] with open('query.txt') as fp: query_images = fp.readlines() query_images = [x.strip() for x in query_images] num_bins = 20 # %% plt.figure(1, figsize=(15, 10)) dist_type = ['chi2', 'intersect', 'l2'] hist_model = ['rg', 'rgb', 'dxdy'] Binss = [10, 20, 30, 40] for bins in Binss: cols = ['r', 'g', 'b'] for i in range(1, 4): plt.subplot(1, 3, i) if i != 2: rpc_module.compare_dist_rpc(model_images, query_images, dist_type, hist_model[i - 1], bins, cols) plt.title(hist_model[i - 1] + ' histograms') else: rpc_module.compare_dist_rpc(model_images, query_images, dist_type, hist_model[i - 1], bins // 2, cols) plt.title(hist_model[i - 1] + ' histograms') plt.savefig("hist_bins" + str(bins) + ".png", format='png', dpi=600) plt.show()
print('number of correct matches: %d (%f)\n' % (num_correct, 1.0 * num_correct / len(query_images))) # plot recall_precision curves (Question 4) with open('model.txt') as fp: model_images = fp.readlines() model_images = [x.strip() for x in model_images] with open('query.txt') as fp: query_images = fp.readlines() query_images = [x.strip() for x in query_images] plt.figure() rpc_module.compare_dist_rpc(model_images, query_images, ['chi2', 'intersect', 'l2'], 'rg', eval_num_bins, ['r', 'g', 'b']) plt.title('RG histograms') plt.show() plt.figure() rpc_module.compare_dist_rpc(model_images, query_images, ['chi2', 'intersect', 'l2'], 'rgb', int(eval_num_bins / 2), ['r', 'g', 'b']) plt.title('RGB histograms') plt.show() plt.figure() rpc_module.compare_dist_rpc(model_images, query_images, ['chi2', 'intersect', 'l2'], 'dxdy', eval_num_bins, ['r', 'g', 'b'])
with open('model.txt') as fp: model_images = fp.readlines() model_images = [x.strip() for x in model_images] with open('query.txt') as fp: query_images = fp.readlines() query_images = [x.strip() for x in query_images] num_bins = [5,10,20,30,40,50] for bin_ in num_bins: plt.figure(8) rpc_module.compare_dist_rpc(model_images, query_images, ['chi2', 'intersect', 'l2'], 'rg', bin_, ['r', 'g', 'b']) plt.title('RG histograms '+ str(bin_)) plt.show() for bin_ in num_bins: plt.figure(9) rpc_module.compare_dist_rpc(model_images, query_images, ['chi2', 'intersect', 'l2'], 'rgb', bin_, ['r', 'g', 'b']) plt.title('RGB histograms '+ str(bin_)) plt.show() for bin_ in num_bins: plt.figure(10) rpc_module.compare_dist_rpc(model_images, query_images, ['chi2', 'intersect', 'l2'], 'dxdy', bin_, ['r', 'g', 'b']) plt.title('dx/dy histograms '+ str(bin_)) plt.show()