Exemple #1
0
def plot_total_bp(parser, args, tot_bp_per_pore):
    """
	Plot the pore performance
	"""
    import math

    r = robjects.r
    r.library("ggplot2")
    grdevices = importr("grDevices")

    flowcell_layout = minion_flowcell_layout()

    pore_values = []
    for pore in flowcell_layout:
        if pore in tot_bp_per_pore:
            pore_values.append(math.log10(tot_bp_per_pore[pore]))
        else:
            pore_values.append(0)

            # make a data frame of the lists
    d = {
        "rownum": robjects.IntVector(range(1, 17) * 32),
        "colnum": robjects.IntVector(sorted(range(1, 33) * 16)),
        "log10_tot_bp": robjects.IntVector(pore_values),
        "labels": robjects.IntVector(flowcell_layout),
    }

    df = robjects.DataFrame(d)
    gp = gg.ggplot(df)
    pp = (
        gp
        + gg.aes_string(y="factor(rownum, rev(rownum))", x="factor(colnum)")
        + gg.geom_point(gg.aes_string(color="log10_tot_bp"), size=7)
        + gg.geom_text(gg.aes_string(label="labels"), colour="white", size=2)
        + gg.scale_colour_gradient2(low="black", mid="black", high="red")
        + gg.coord_fixed(ratio=1.4)
        + gg.labs(x=gg.NULL, y=gg.NULL)
    )

    if args.saveas is not None:
        plot_file = args.saveas
        if plot_file.endswith(".pdf"):
            grdevices.pdf(plot_file, width=11, height=8.5)
        elif plot_file.endswith(".png"):
            grdevices.png(plot_file, width=11, height=8.5, units="in", res=300)
        else:
            logger.error("Unrecognized extension for %s!" % (plot_file))
            sys.exit()

        pp.plot()
        grdevices.dev_off()
    else:
        pp.plot()
        # keep the plot open until user hits enter
        print ("Type enter to exit.")
        raw_input()
Exemple #2
0
def plot_total_bp(parser, args, tot_bp_per_pore):
    """
    Plot the pore performance
    """
    import math
    r = robjects.r
    r.library("ggplot2")
    grdevices = importr('grDevices')

    flowcell_layout = minion_flowcell_layout()

    pore_values = []
    for pore in flowcell_layout:
        if pore in tot_bp_per_pore:
            pore_values.append(math.log10(tot_bp_per_pore[pore]))
        else:
            pore_values.append(0)

    # make a data frame of the lists
    d = {'rownum': robjects.IntVector(range(1,17)*32),
         'colnum': robjects.IntVector(sorted(range(1,33)*16)),
         'log10_tot_bp': robjects.IntVector(pore_values),
         'labels': robjects.IntVector(flowcell_layout)
         }

    df = robjects.DataFrame(d)
    gp = gg.ggplot(df)
    pp = gp + gg.aes_string(y = 'factor(rownum, rev(rownum))', \
                     x = 'factor(colnum)') \
        + gg.geom_point(gg.aes_string(color='log10_tot_bp'), size = 7) \
        + gg.geom_text(gg.aes_string(label ='labels'), colour="white", size = 2) \
        + gg.scale_colour_gradient2(low = "black", mid= "black", high="red") \
        + gg.coord_fixed(ratio=1.4) \
        + gg.labs(x=gg.NULL, y=gg.NULL)

    if args.saveas is not None:
        plot_file = args.saveas
        if plot_file.endswith(".pdf"):
            grdevices.pdf(plot_file, width = 11, height = 8.5)
        elif plot_file.endswith(".png"):
            grdevices.png(plot_file, width = 11, height = 8.5,
                units = "in", res = 300)
        else:
            logger.error("Unrecognized extension for %s!" % (plot_file))
            sys.exit()

        pp.plot()
        grdevices.dev_off()
    else:
        pp.plot()
        # keep the plot open until user hits enter
        print('Type enter to exit.')
        raw_input()
 def plot_similarity_matrix(self, item_type, image_file, title):
     '''Plot similarities of crawls (overlap of unique items)
     as heat map matrix'''
     data = defaultdict(dict)
     n = 1
     for crawl1 in self.similarity[item_type]:
         for crawl2 in self.similarity[item_type][crawl1]:
             similarity = self.similarity[item_type][crawl1][crawl2]
             data['crawl1'][n] = MonthlyCrawl.short_name(crawl1)
             data['crawl2'][n] = MonthlyCrawl.short_name(crawl2)
             data['similarity'][n] = similarity
             data['sim_rounded'][n] = similarity  # to be rounded
             n += 1
     data = pandas.DataFrame(data)
     print(data)
     # select median of similarity values as midpoint of similarity scale
     midpoint = data['similarity'].median()
     decimals = 3
     textsize = 2
     minshown = .0005
     if (data['similarity'].max()-data['similarity'].min()) > .2:
         decimals = 2
         textsize = 2.8
         minshown = .005
     data['sim_rounded'] = data['sim_rounded'].apply(
         lambda x: ('{0:.'+str(decimals)+'f}').format(x).lstrip('0')
         if x >= minshown else '0')
     print('Median of similarities for', item_type, '=', midpoint)
     matrix_size = len(self.similarity[item_type])
     if matrix_size > self.MAX_MATRIX_SIZE:
         n = 0
         for crawl1 in sorted(self.similarity[item_type], reverse=True):
             short_name = MonthlyCrawl.short_name(crawl1)
             if n > self.MAX_MATRIX_SIZE:
                 data = data[data['crawl1'] != short_name]
                 data = data[data['crawl2'] != short_name]
             n += 1
     p = ggplot2.ggplot(data) \
         + ggplot2.aes_string(x='crawl2', y='crawl1',
                              fill='similarity', label='sim_rounded') \
         + ggplot2.geom_tile(color="white") \
         + ggplot2.scale_fill_gradient2(low="red", high="blue", mid="white",
                                        midpoint=midpoint, space="Lab") \
         + GGPLOT2_THEME \
         + ggplot2.coord_fixed() \
         + ggplot2.theme(**{'axis.text.x':
                            ggplot2.element_text(angle=45,
                                                 vjust=1, hjust=1)}) \
         + ggplot2.labs(title=title, x='', y='') \
         + ggplot2.geom_text(color='black', size=textsize)
     img_path = os.path.join(PLOTDIR, image_file)
     p.save(img_path)
     return p
Exemple #4
0
def main():
    '''
    maine
    '''

    # Command Line Stuff...
    myCommandLine = CommandLine()

    outdir     = myCommandLine.args['outDir']
    group1     = myCommandLine.args['group1']
    group2     = myCommandLine.args['group2']
    batch      = myCommandLine.args['batch']  
    matrix     = myCommandLine.args['matrix']
    prefix     = myCommandLine.args['prefix']
    formula    = myCommandLine.args['formula']

    print("running DESEQ2 %s" % prefix, file=sys.stderr)

    # make the quant DF
    quantDF  = pd.read_table(matrix, header=0, sep='\t', index_col=0)
    df = pandas2ri.py2ri(quantDF)

    # import formula
    formulaDF     = pd.read_csv(formula,header=0, sep="\t",index_col=0)
    sampleTable = pandas2ri.py2ri(formulaDF)


    if "batch" in list(formulaDF):
        design = Formula("~ batch + condition")
    else:
        design = Formula("~ condition")
   

    # import DESeq2
    from rpy2.robjects.packages import importr
    import rpy2.robjects.lib.ggplot2 as ggplot2
    methods   = importr('methods')
    deseq     = importr('DESeq2')
    grdevices = importr('grDevices')
    qqman     = importr('qqman')



    ### RUN DESEQ2 ###
    R.assign('df', df)
    R.assign('sampleTable', sampleTable)
    R.assign('design',design)
    R('dds <- DESeqDataSetFromMatrix(countData = df, colData = sampleTable, design = design)')
    R('dds <- DESeq(dds)')
    R('name <- grep("condition", resultsNames(dds), value=TRUE)')

    ###
    ###
    # Get Results and shrinkage values
    res    = R('results(dds, name=name)')
    resLFC = R('lfcShrink(dds, coef=name)')
    vsd    = R('vst(dds,blind=FALSE)')
    resdf  = robjects.r['as.data.frame'](res) 
    reslfc = robjects.r['as.data.frame'](resLFC)
    dds    = R('dds')

    
    ### Plotting section ###
    # plot MA and PC stats for the user
    plotMA    = robjects.r['plotMA']
    plotDisp  = robjects.r['plotDispEsts']
    plotPCA   = robjects.r['plotPCA']
    plotQQ    = robjects.r['qq']
    
    # get pca data
    if "batch" in list(formulaDF):
        pcaData    = plotPCA(vsd, intgroup=robjects.StrVector(("condition", "batch")), returnData=robjects.r['T'])
        percentVar = robjects.r['attr'](pcaData, "percentVar")
    else:
        print(vsd)
        pcaData    = plotPCA(vsd, intgroup="condition", returnData=robjects.r['T'])
        percentVar = robjects.r['attr'](pcaData, "percentVar")
    # arrange 


    data_folder = os.path.join(os.getcwd(), outdir)
    qcOut = os.path.join(data_folder, "%s_QCplots_%s_v_%s.pdf"  % (prefix,group1,group2))
    
    grdevices.pdf(file=qcOut)

    x = "PC1: %s" % int(percentVar[0]*100) + "%% variance"
    y = "PC2: %s" % int(percentVar[1]*100) + "%% variance"

    if "batch" in list(formulaDF):
        pp = ggplot2.ggplot(pcaData) + \
                ggplot2.aes_string(x="PC1", y="PC2", color="condition", shape="batch") + \
                ggplot2.geom_point(size=3) + \
                robjects.r['xlab'](x) + \
                robjects.r['ylab'](y) + \
                ggplot2.theme_classic() + \
                ggplot2.coord_fixed()

    else:
        pp = ggplot2.ggplot(pcaData) + \
                ggplot2.aes_string(x="PC1", y="PC2", color="condition") + \
                ggplot2.geom_point(size=3) + \
                robjects.r['xlab'](x) + \
                robjects.r['ylab'](y) + \
                ggplot2.theme_classic() + \
                ggplot2.coord_fixed()
    pp.plot()
    plotMA(res, ylim=robjects.IntVector((-3,3)), main="MA-plot results")
    plotMA(resLFC, ylim=robjects.IntVector((-3,3)), main="MA-plot LFCSrhinkage")    
    plotQQ(reslfc.rx2('pvalue'), main="LFCSrhinkage pvalue QQ")
    hh = ggplot2.ggplot(resdf) + \
            ggplot2.aes_string(x="pvalue") + \
            ggplot2.geom_histogram() + \
            ggplot2.theme_classic() + \
            ggplot2.ggtitle("pvalue distribution")
    hh.plot()
    plotDisp(dds, main="Dispersion Estimates")
    grdevices.dev_off()


    data_folder = os.path.join(os.getcwd(), outdir)
    lfcOut = os.path.join(data_folder, "%s_%s_v_%s_deseq2_results_shrinkage.tsv"  % (prefix,group1,group2))
    resOut = os.path.join(data_folder, "%s_%s_v_%s_deseq2_results.tsv"  % (prefix,group1,group2))
   
    robjects.r['write.table'](reslfc, file=lfcOut, quote=False, sep="\t")
    robjects.r['write.table'](resdf, file=resOut, quote=False, sep="\t")
Exemple #5
0
def main():
    '''
    maine
    '''

    # Command Line Stuff...
    myCommandLine = CommandLine()

    outdir     = myCommandLine.args['outDir']
    group1     = myCommandLine.args['group1']
    group2     = myCommandLine.args['group2']
    batch      = myCommandLine.args['batch']  
    matrix     = myCommandLine.args['matrix']
    prefix     = myCommandLine.args['prefix']
    formula    = myCommandLine.args['formula']




    # make the quant DF
    quantDF  = pd.read_table(matrix, header=0, sep='\t', index_col=0)
    df = pandas2ri.py2ri(quantDF)
    #print(df.head())
    # import formula
    formulaDF     = pd.read_csv(formula,header=0, sep="\t",index_col=0)
    sampleTable = pandas2ri.py2ri(formulaDF)

    if "batch" in list(formulaDF):
        design = Formula("~ batch + condition")
    else:
        design = Formula("~ condition")
    #print(sampleTable)

    # import DESeq2
    from rpy2.robjects.packages import importr
    import rpy2.robjects.lib.ggplot2 as ggplot2
    methods   = importr('methods')
    deseq     = importr('DESeq2')
    grdevices = importr('grDevices')
    qqman     = importr('qqman')



    dds = deseq.DESeqDataSetFromMatrix(countData = df,
                                        colData = sampleTable,
                                        design = design)

    dds  = deseq.DESeq(dds)
    cont = robjects.r["grep"]("condition",robjects.r['resultsNames'](dds),value=True)
    #print(cont)
    # get results; orient the results for groupA vs B
    res = deseq.results(dds, name=cont)
    # results with shrinkage
    resLFC = deseq.lfcShrink(dds, coef=cont, type="apeglm")
    resdf  = robjects.r['as.data.frame'](res)
    
    R.assign('res', res)
    
    reslfc  = robjects.r['as.data.frame'](resLFC)

    # plot MA and PC stats for the user
    plotMA    = robjects.r['plotMA']
    plotDisp  = robjects.r['plotDispEsts']
    plotPCA   = robjects.r['plotPCA']
    plotQQ    = robjects.r['qq']
    
    vsd       = robjects.r['vst'](dds, blind=robjects.r['F'])
    # get pca data
    if "batch" in list(formulaDF):
        pcaData    = plotPCA(vsd, intgroup=robjects.StrVector(("condition", "batch")), returnData=robjects.r['T'])
        percentVar = robjects.r['attr'](pcaData, "percentVar")
    else:
        print(vsd)
        pcaData    = plotPCA(vsd, intgroup="condition", returnData=robjects.r['T'])
        percentVar = robjects.r['attr'](pcaData, "percentVar")
    # arrange 
    grdevices.pdf(file="./%s/%s_QCplots_%s_v_%s.pdf" % (outdir,prefix,group1,group2))


    x = "PC1: %s" % int(percentVar[0]*100) + "%% variance"
    y = "PC2: %s" % int(percentVar[1]*100) + "%% variance"

    if "batch" in list(formulaDF):
        pp = ggplot2.ggplot(pcaData) + \
                ggplot2.aes_string(x="PC1", y="PC2", color="condition", shape="batch") + \
                ggplot2.geom_point(size=3) + \
                robjects.r['xlab'](x) + \
                robjects.r['ylab'](y) + \
                ggplot2.theme_classic() + \
                ggplot2.coord_fixed()
        pp.plot()
    else:
        pp = ggplot2.ggplot(pcaData) + \
                ggplot2.aes_string(x="PC1", y="PC2", color="condition") + \
                ggplot2.geom_point(size=3) + \
                robjects.r['xlab'](x) + \
                robjects.r['ylab'](y) + \
                ggplot2.theme_classic() + \
                ggplot2.coord_fixed()
        pp.plot()
    plotMA(res, ylim=robjects.IntVector((-3,3)), main="MA-plot results")
    #plotMA(res, main="MA-plot results")
    plotMA(resLFC, ylim=robjects.IntVector((-3,3)), main="MA-plot LFCSrrhinkage")
    #plotMA(resLFC, main="MA-plot LFCSrrhinkage")
    plotQQ(resdf.rx2('pvalue'), main="pvalue QQ")
    plotQQ(reslfc.rx2('pvalue'), main="LFCSrhinkage pvalue QQ")
    hh = ggplot2.ggplot(resdf) + \
            ggplot2.aes_string(x="pvalue") + \
            ggplot2.geom_histogram() + \
            ggplot2.theme_classic() 
    hh.plot()
    plotDisp(dds, main="Dispersion Estimates")
    grdevices.dev_off()


    lfcOut =  "./%s/%s_%s_v_%s_deseq2_results_shrinkage.tsv" % (outdir,prefix,group1,group2)
    resOut =  "./%s/%s_%s_v_%s_deseq2_results.tsv" % (outdir,prefix,group1,group2)

    robjects.r['write.table'](reslfc, file=lfcOut, quote=False, sep="\t")
    robjects.r['write.table'](resdf, file=resOut, quote=False, sep="\t")
Exemple #6
0
def main():
    '''
    maine
    '''

    # Command Line Stuff...
    myCommandLine = CommandLine()

    outdir = "diffExpOut"
    group1 = myCommandLine.args['group1']
    group2 = myCommandLine.args['group2']
    batch = myCommandLine.args['batch']
    matrix = myCommandLine.args['matrix']
    prefix = "flair_diffexp"

    # make the quant DF
    quantDF = pd.read_table(matrix, header=0, sep='\t')
    quantDF = quantDF.set_index('ids')
    df = pandas2ri.py2ri(quantDF)

    # now make the formula
    with open(matrix) as l:
        header = next(l).rstrip().split()[1:]

    formula = [[x, x.split("_")[1], x.split("_")[-1]] for x in header]
    formulaDF = pd.DataFrame(formula)
    formulaDF.columns = ['sampleName', 'condition', 'batch']
    formulaDF = formulaDF.set_index('sampleName')
    sampleTable = pandas2ri.py2ri(formulaDF)

    design = Formula("~ batch + condition")
    print(sampleTable)

    # import DESeq2
    from rpy2.robjects.packages import importr
    import rpy2.robjects.lib.ggplot2 as ggplot2
    methods = importr('methods')
    deseq = importr('DESeq2')
    grdevices = importr('grDevices')
    qqman = importr('qqman')

    dds = deseq.DESeqDataSetFromMatrix(countData=df,
                                       colData=sampleTable,
                                       design=design)

    dds = deseq.DESeq(dds)
    cont = robjects.r["grep"]("condition",
                              robjects.r['resultsNames'](dds),
                              value="TRUE")

    # get results; orient the results for groupA vs B
    res = deseq.results(dds, name=cont)
    # results with shrinkage
    resLFC = deseq.lfcShrink(dds, coef=cont, type="apeglm")
    resdf = robjects.r['as.data.frame'](res)

    R.assign('res', res)
    R('write.table(res, file="testres.tsv", quote=FALSE, col.names=NA)')
    reslfc = robjects.r['as.data.frame'](resLFC)

    # plot MA and PC stats for the user
    plotMA = robjects.r['plotMA']
    plotDisp = robjects.r['plotDispEsts']
    plotPCA = robjects.r['plotPCA']
    plotQQ = robjects.r['qq']

    vsd = robjects.r['vst'](dds, blind=robjects.r['F'])
    # get pca data
    pcaData = plotPCA(vsd,
                      intgroup=robjects.StrVector(("condition", "batch")),
                      returnData=robjects.r['T'])
    percentVar = robjects.r['attr'](pcaData, "percentVar")

    # arrange
    grdevices.pdf(file="./%s/%s_%s_vs_%s_%s_cutoff_plots.pdf" %
                  (outdir, prefix, group1, group2, str(batch)))

    x = "PC1: %s" % int(percentVar[0] * 100) + "%% variance"
    y = "PC2: %s" % int(percentVar[1] * 100) + "%% variance"

    pp = ggplot2.ggplot(pcaData) + \
            ggplot2.aes_string(x="PC1", y="PC2", color="condition", shape="batch") + \
            ggplot2.geom_point(size=3) + \
            robjects.r['xlab'](x) + \
            robjects.r['ylab'](y) + \
            ggplot2.theme_classic() + \
            ggplot2.coord_fixed()
    pp.plot()

    plotMA(res, ylim=robjects.IntVector((-3, 3)), main="MA-plot results")
    #plotMA(res, main="MA-plot results")
    plotMA(resLFC,
           ylim=robjects.IntVector((-3, 3)),
           main="MA-plot LFCSrrhinkage")
    #plotMA(resLFC, main="MA-plot LFCSrrhinkage")
    plotQQ(resdf.rx2('pvalue'), main="pvalue QQ")
    plotQQ(reslfc.rx2('pvalue'), main="LFCSrhinkage pvalue QQ")
    hh = ggplot2.ggplot(resdf) + \
            ggplot2.aes_string(x="pvalue") + \
            ggplot2.geom_histogram() + \
            ggplot2.theme_classic()
    hh.plot()
    plotDisp(dds, main="Dispersion Estimates")
    grdevices.dev_off()

    lfcOut = "./%s/%s_%s_deseq2_results_LFC.tsv" % (outdir, prefix, str(batch))
    resOut = "./%s/%s_%s_deseq2_results.tsv" % (outdir, prefix, str(batch))

    robjects.r['write.table'](reslfc, file=lfcOut, quote=False, sep="\t")
    robjects.r['write.table'](resdf, file=resOut, quote=False, sep="\t")
    sys.exit(1)
    reslsf = pandas2ri.ri2py(reslfc)
    res = pandas2ri.ri2py(resdf)

    reslsf.to_csv("./%s/%s_%s_deseq2_results_LFC.tsv" %
                  (outdir, prefix, str(batch)),
                  sep='\t')
    res.to_csv("./%s/%s_%s_deseq2_results.tsv" % (outdir, prefix, str(batch)),
               sep='\t')
Exemple #7
0
def main():
    '''
    maine
    '''

    # Command Line Stuff...
    myCommandLine = CommandLine()

    workingdir = myCommandLine.args['workingdir']
    outdir = myCommandLine.args['outdir']
    group1 = myCommandLine.args['group1']
    group2 = myCommandLine.args['group2']
    batch = myCommandLine.args['batch']
    files = myCommandLine.args['files']
    prefix = myCommandLine.args['out_prefix']
    sFilter = myCommandLine.args['filter']

    makeDir(outdir)

    files = checkSamples(files)

    df = filesToDF(files, sFilter)

    # DO DESEQ2
    from rpy2 import robjects
    from rpy2.robjects import r, pandas2ri, Formula
    from rpy2.robjects.lib import grid
    pandas2ri.activate()

    # Compile data for data frame
    data = list()
    for f in files:
        if group1 in f:
            if batch in f:
                data.append((f, group1, '1'))
            else:
                data.append((f, group1, '2'))
        else:
            if batch in f:
                data.append((f, group2, '1'))
            else:
                data.append((f, group2, '2'))

    # Make the Data Frame
    pydf = pd.DataFrame(data)
    pydf.columns = ['sampleName', 'condition', 'batch']
    pydf = pydf.set_index('sampleName')
    # Convert pandas to R data frame.
    sampleTable = pandas2ri.py2ri(pydf)

    # DESEQ2 part.
    # Forumla
    design = Formula("~ batch + condition")

    # import DESeq2
    from rpy2.robjects.packages import importr
    import rpy2.robjects.lib.ggplot2 as ggplot2
    methods = importr('methods')
    deseq = importr('DESeq2')
    grdevices = importr('grDevices')
    qqman = importr('qqman')

    # dds = deseq.DESeqDataSetFromHTSeqCount(sampleTable = sampleTable,
    #                                         directory = workingdir,
    #                                         design= design)

    dds = deseq.DESeqDataSetFromMatrix(countData=df,
                                       colData=sampleTable,
                                       design=design)
    dds = deseq.DESeq(dds)

    # get results; orient the results for groupA vs B
    res = deseq.results(dds,
                        contrast=robjects.StrVector(
                            ("condition", group2, group1)))
    # results with shrinkage
    resLFC = deseq.lfcShrink(dds,
                             coef="condition_%s_vs_%s" % (group2, group1),
                             type="apeglm")
    resdf = robjects.r['as.data.frame'](res)
    reslfc = robjects.r['as.data.frame'](resLFC)

    # plot MA and PC stats for the user
    plotMA = robjects.r['plotMA']
    plotDisp = robjects.r['plotDispEsts']
    plotPCA = robjects.r['plotPCA']
    plotQQ = robjects.r['qq']

    vsd = robjects.r['vst'](dds, blind=robjects.r['F'])
    # get pca data
    pcaData = plotPCA(vsd,
                      intgroup=robjects.StrVector(("condition", "batch")),
                      returnData=robjects.r['T'])
    percentVar = robjects.r['attr'](pcaData, "percentVar")

    # arrange
    grdevices.pdf(file="./%s/%s_%s_vs_%s_%s_%s_cutoff_plots.pdf" %
                  (outdir, prefix, group1, group2, str(batch), sFilter))

    x = "PC1: %s" % int(percentVar[0] * 100) + "%% variance"
    y = "PC2: %s" % int(percentVar[1] * 100) + "%% variance"

    pp = ggplot2.ggplot(pcaData) + \
            ggplot2.aes_string(x="PC1", y="PC2", color="condition", shape="batch") + \
            ggplot2.geom_point(size=3) + \
            robjects.r['xlab'](x) + \
            robjects.r['ylab'](y) + \
            ggplot2.theme_classic() + \
            ggplot2.coord_fixed()
    pp.plot()

    plotMA(res, ylim=robjects.IntVector((-3, 3)), main="MA-plot results")
    #plotMA(res, main="MA-plot results")
    plotMA(resLFC,
           ylim=robjects.IntVector((-3, 3)),
           main="MA-plot LFCSrrhinkage")
    #plotMA(resLFC, main="MA-plot LFCSrrhinkage")
    plotQQ(resdf.rx2('pvalue'), main="pvalue QQ")
    plotQQ(reslfc.rx2('pvalue'), main="LFCSrhinkage pvalue QQ")
    hh = ggplot2.ggplot(resdf) + \
            ggplot2.aes_string(x="pvalue") + \
            ggplot2.geom_histogram() + \
            ggplot2.theme_classic()
    hh.plot()
    plotDisp(dds, main="Dispersion Estimates")
    grdevices.dev_off()

    reslsf = pandas2ri.ri2py(reslfc)
    res = pandas2ri.ri2py(resdf)

    reslsf.to_csv("./%s/%s_%s_vs_%s_%s_deseq2_results_LFC.tsv" %
                  (outdir, prefix, group1, group2, str(batch)),
                  sep='\t')
    reslsf.to_csv("./%s/%s_%s_vs_%s_%s_deseq2_results.tsv" %
                  (outdir, prefix, group1, group2, str(batch)),
                  sep='\t')