def get_labels(self, labelname='Stress'): r = [] series = [] for tsd in self: g = tsd.df_meta.transpose().groupby(by='SeriesID') for k,df in g: series.append(k) r.append(df[labelname].tolist()[0]) return pd.DataFrame(r, columns=[labelname], index=series)
def modelmatrix(table, axis=0, factor_list=None): if (factor_list is None): factor_list = factor(table) # do factor encoding r = [] if (type(table) == pd.DataFrame or type(table) == pd.Series): idx = table.index table = table.values.flatten() else: raise Exception('Only DataFrame/Series format is supported') for x in table.tolist(): r.append(factor_list == x) return pd.DataFrame(np.array(r)*1, columns=factor_list, index=idx)
def get_labels_per_time(self, labelname='Stress'): r = [] for tsd in self: r.append( tsd.df_meta.loc[labelname] ) return pd.concat(r, axis=1)