Exemple #1
0
    def form_data(self):
        ''' Form time series data used in lm model.
'''
        assert self.t is not None, "t is not defined."
        assert self.y is not None, "y is not defined."

        globalenv['t'] = FloatVector(self.t)
        globalenv['y'] = FloatVector(self.y)
        if self.ysd is None:
            globalenv['ysd'] = FloatVector(ones_like(self.y))
        else:
            globalenv['ysd'] = FloatVector(self.ysd)
        _r('the_data <- data.frame(t=t,y=y,ysd=ysd)')
Exemple #2
0
    def predict(self, t, level=0.95, interval='none'):
        ''' Interface of R predict function.
'''
        globalenv['t_pred'] = FloatVector(t)
        y=array(_r('predict(fit,data.frame(t=t_pred),level=%f,interval="%s")'%\
                   (level,interval)))
        return y
Exemple #3
0
    def get_res(self):
        ''' Return residual of the part of time series that is used in linear regression.
Nan is there is no residula available.
'''
        tp = asarray(_r('resid(fit)'))
        res = zeros_like(self.t) + nan
        res[self.subset] = tp
        return res
Exemple #4
0
    def __init__(self):
        # initialize the r process
        _r('''
            # define a heaviside function:
            hvsd <-
            function(x, a = 0){
                result = (sign(x-a) + 1.)/2.
                result
            }

            T<-365.
            Omega<-2*pi/T
            ''')
        ## @var if_sea
        # If consider seasonal signal?
        self.if_sea = None

        ## @var if_semi
        # if consider semisesonal signal?
        self.if_semi = None

        ## jumps list
        self.jumps = None

        ## data_par : t
        self.t = None

        ## y
        self.y = None

        ## ysd
        self.y = None

        ## linear sections used for linear regression.
        self.linsecs = None

        ## record the outliers
        self.if_outlier = None

        ## outlier criteri (times of st):
        self.outlier_cri = 3.0
Exemple #5
0
    def lm(self, verbose=True):
        ''' Do linear regression.
'''
        self.form_model()
        self.form_data()
        self.form_subset()
        _r('fit <- lm(fml,the_data,subset)')
        nth = 1
        if verbose:
            print('%dth iter: std(mm)=%.3f vel(mm/yr)=%.3f outliers #:%d'%\
                  (nth,self.get_res_std()*1000.,self.get_vel()*365.*1000.,
                   sum(self.if_outlier)))
        nth += 1
        while self.mark_outliers() > 0:
            self.form_subset()
            #_r('fit <- lm(fml,the_data,subset,weights=1/ysd^2)')
            _r('fit <- update(fit,.~.,subset=subset,weights=1/ysd^2)')
            if verbose:
                print('%dth iter: std(mm)=%.3f vel(mm/yr)=%.3f outliers #:%d'%\
                      (nth,self.get_res_std()*1000.,self.get_vel()*365.*1000.,
                       sum(self.if_outlier)))
            nth += 1
Exemple #6
0
 def get_magnitude_semiseasonal(self):
     S = _r("fit$coe[['sin(2 * Omega * t)']]")[0]
     C = _r("fit$coe[['cos(2 * Omega * t)']]")[0]
     return sqrt(S**2 + C**2)
Exemple #7
0
    def get_jumps(self):
        ''' Reture jumps and their value.
'''
        for jump in self.jumps:
            yield (jump, _r("fit$coe[['hvsd(t, %d)']]" % jump)[0])
Exemple #8
0
    def get_vel_sd(self):
        '''
'''
        return _r("summary(fit)$coef['t','Std. Error']")[0]
Exemple #9
0
    def get_vel(self):
        '''
'''
        return _r("fit$coe[['t']]")[0]
Exemple #10
0
 def get_res_time_series(self):
     res = asarray(_r('resid(fit)'))
     return res, self.t[self.subset]
Exemple #11
0
    def get_res_std(self):
        ''' Return standard error of residuls.
'''
        return float(_r("summary(fit)$sigma")[0])
Exemple #12
0

if __name__ == '__main__':
    # local testing code
    mod = PreRModel()

    # model:
    mod.if_sea = True
    mod.if_semi = True
    mod.jumps = []

    # data:
    tp = loadtxt('../J550.IGS08')
    t = tp[:, 0]
    e = tp[:, 1] * 1000.

    t_eq = 55631

    mod.t = t
    mod.y = e
    mod.linsecs = [[-inf, 55631]]

    mod.lm()
    print(_r('summary(fit)'))
    print(_r('coef(summary(fit))'))

    plot(mod.t, mod.get_res(), 'x')
    res = mod.predict_res(mod.t[mod.if_outlier], mod.y[mod.if_outlier])
    plot(mod.t[mod.if_outlier], res, 'r.')
    show()