Exemple #1
0
def test_flattenrec():
    r = FlattenRecursion()
    seen = set()

    def rec(n):
        if n > 0:
            r(rec, n - 1)
        seen.add(n)

    rec(10000)
    assert seen == set(range(10001))
Exemple #2
0
class InstanceRepr(Repr):
    def __init__(self, rtyper, classdef, gcflavor='gc'):
        self.rtyper = rtyper
        self.classdef = classdef
        if classdef is None:
            self.object_type = OBJECT_BY_FLAVOR[LLFLAVOR[gcflavor]]
        else:
            ForwardRef = lltype.FORWARDREF_BY_FLAVOR[LLFLAVOR[gcflavor]]
            self.object_type = ForwardRef()
        self.iprebuiltinstances = identity_dict()
        self.lowleveltype = Ptr(self.object_type)
        self.gcflavor = gcflavor

    def has_special_memory_pressure(self, tp):
        if 'special_memory_pressure' in tp._flds:
            return True
        if 'super' in tp._flds:
            return self.has_special_memory_pressure(tp._flds['super'])
        return False

    def _setup_repr(self, llfields=None, hints=None, adtmeths=None):
        # NOTE: don't store mutable objects like the dicts below on 'self'
        #       before they are fully built, to avoid strange bugs in case
        #       of recursion where other code would uses these
        #       partially-initialized dicts.
        if self.classdef is None:
            self.immutable_field_set = set()
        self.rclass = getclassrepr(self.rtyper, self.classdef)
        fields = {}
        allinstancefields = {}
        if self.classdef is None:
            fields['__class__'] = 'typeptr', get_type_repr(self.rtyper)
        else:
            # instance attributes
            attrs = self.classdef.attrs.items()
            attrs.sort()
            myllfields = []
            for name, attrdef in attrs:
                if not attrdef.readonly:
                    r = self.rtyper.getrepr(attrdef.s_value)
                    mangled_name = 'inst_' + name
                    fields[name] = mangled_name, r
                    myllfields.append((mangled_name, r.lowleveltype))

            myllfields.sort(key=attr_reverse_size)
            if llfields is None:
                llfields = myllfields
            else:
                llfields = llfields + myllfields

            self.rbase = getinstancerepr(self.rtyper, self.classdef.basedef,
                                         self.gcflavor)
            self.rbase.setup()

            MkStruct = lltype.STRUCT_BY_FLAVOR[LLFLAVOR[self.gcflavor]]
            if adtmeths is None:
                adtmeths = {}
            if hints is None:
                hints = {}
            hints = self._check_for_immutable_hints(hints)
            if self.classdef.classdesc.get_param('_rpython_never_allocate_'):
                hints['never_allocate'] = True

            kwds = {}
            if self.gcflavor == 'gc':
                kwds['rtti'] = True

            for name, attrdef in attrs:
                if not attrdef.readonly and self.is_quasi_immutable(name):
                    llfields.append(('mutate_' + name, OBJECTPTR))

            bookkeeper = self.rtyper.annotator.bookkeeper
            if self.classdef in bookkeeper.memory_pressure_types:
                # we don't need to add it if it's already there for some of
                # the parent type
                if not self.has_special_memory_pressure(
                        self.rbase.object_type):
                    llfields.append(('special_memory_pressure', lltype.Signed))
                    fields['special_memory_pressure'] = (
                        'special_memory_pressure',
                        self.rtyper.getrepr(lltype_to_annotation(
                            lltype.Signed)))

            object_type = MkStruct(self.classdef.name,
                                   ('super', self.rbase.object_type),
                                   hints=hints,
                                   adtmeths=adtmeths,
                                   *llfields,
                                   **kwds)
            self.object_type.become(object_type)
            allinstancefields.update(self.rbase.allinstancefields)
        allinstancefields.update(fields)
        self.fields = fields
        self.allinstancefields = allinstancefields

    def _check_for_immutable_hints(self, hints):
        hints = hints.copy()
        classdesc = self.classdef.classdesc
        immut = classdesc.get_param('_immutable_', inherit=False)
        if immut is None:
            if classdesc.get_param('_immutable_', inherit=True):
                raise ImmutableConflictError(
                    "class %r inherits from its parent _immutable_=True, "
                    "so it should also declare _immutable_=True" %
                    (self.classdef, ))
        elif immut is not True:
            raise TyperError(
                "class %r: _immutable_ = something else than True" %
                (self.classdef, ))
        else:
            hints['immutable'] = True
        self.immutable_field_set = classdesc.immutable_fields
        if (classdesc.immutable_fields
                or 'immutable_fields' in self.rbase.object_type._hints):
            accessor = FieldListAccessor()
            hints['immutable_fields'] = accessor
        return hints

    def __repr__(self):
        if self.classdef is None:
            clsname = 'object'
        else:
            clsname = self.classdef.name
        return '<InstanceRepr for %s>' % (clsname, )

    def compact_repr(self):
        if self.classdef is None:
            clsname = 'object'
        else:
            clsname = self.classdef.name
        return 'InstanceR %s' % (clsname, )

    def _setup_repr_final(self):
        self._setup_immutable_field_list()
        self._check_for_immutable_conflicts()
        if self.gcflavor == 'gc':
            if (self.classdef is not None
                    and self.classdef.classdesc.lookup('__del__') is not None):
                s_func = self.classdef.classdesc.s_read_attribute('__del__')
                source_desc = self.classdef.classdesc.lookup('__del__')
                source_classdef = source_desc.getclassdef(None)
                source_repr = getinstancerepr(self.rtyper, source_classdef)
                assert len(s_func.descriptions) == 1
                funcdesc, = s_func.descriptions
                graph = funcdesc.getuniquegraph()
                self.check_graph_of_del_does_not_call_too_much(
                    self.rtyper, graph)
                FUNCTYPE = FuncType([Ptr(source_repr.object_type)], Void)
                destrptr = functionptr(FUNCTYPE,
                                       graph.name,
                                       graph=graph,
                                       _callable=graph.func)
            else:
                destrptr = None
            self.rtyper.call_all_setups()  # compute ForwardReferences now
            args_s = [SomePtr(Ptr(OBJECT))]
            graph = self.rtyper.annotate_helper(ll_runtime_type_info, args_s)
            s = self.rtyper.annotation(graph.getreturnvar())
            if (not isinstance(s, SomePtr)
                    or s.ll_ptrtype != Ptr(RuntimeTypeInfo)):
                raise TyperError("runtime type info function returns %r, "
                                 "expected Ptr(RuntimeTypeInfo)" % (s))
            funcptr = self.rtyper.getcallable(graph)
            attachRuntimeTypeInfo(self.object_type, funcptr, destrptr)

            vtable = self.rclass.getvtable()
            self.rtyper.set_type_for_typeptr(vtable, self.lowleveltype.TO)

    def _setup_immutable_field_list(self):
        hints = self.object_type._hints
        if "immutable_fields" in hints:
            accessor = hints["immutable_fields"]
            if not hasattr(accessor, 'fields'):
                immutable_fields = set()
                rbase = self
                while rbase.classdef is not None:
                    immutable_fields.update(rbase.immutable_field_set)
                    rbase = rbase.rbase
                self._parse_field_list(immutable_fields, accessor, hints)

    def _parse_field_list(self, fields, accessor, hints):
        ranking = {}
        for fullname in fields:
            name = fullname
            quasi = False
            if name.endswith('?[*]'):  # a quasi-immutable field pointing to
                name = name[:-4]  # an immutable array
                rank = IR_QUASIIMMUTABLE_ARRAY
                quasi = True
            elif name.endswith('[*]'):  # for virtualizables' lists
                name = name[:-3]
                rank = IR_IMMUTABLE_ARRAY
            elif name.endswith('?'):  # a quasi-immutable field
                name = name[:-1]
                rank = IR_QUASIIMMUTABLE
                quasi = True
            else:  # a regular immutable/green field
                rank = IR_IMMUTABLE
            try:
                mangled_name, r = self._get_field(name)
            except KeyError:
                continue
            if quasi and hints.get("immutable"):
                raise TyperError(
                    "can't have _immutable_ = True and a quasi-immutable field "
                    "%s in class %s" % (name, self.classdef))
            if rank in (IR_QUASIIMMUTABLE_ARRAY, IR_IMMUTABLE_ARRAY):
                from rpython.rtyper.rlist import AbstractBaseListRepr
                if not isinstance(r, AbstractBaseListRepr):
                    raise TyperError(
                        "_immutable_fields_ = [%r] in %r, but %r is not a list "
                        "(got %r)" % (fullname, self, name, r))
            ranking[mangled_name] = rank
        accessor.initialize(self.object_type, ranking)
        return ranking

    def _check_for_immutable_conflicts(self):
        # check for conflicts, i.e. a field that is defined normally as
        # mutable in some parent class but that is now declared immutable
        is_self_immutable = "immutable" in self.object_type._hints
        base = self
        while base.classdef is not None:
            base = base.rbase
            for fieldname in base.fields:
                if fieldname == 'special_memory_pressure':
                    continue
                try:
                    mangled, r = base._get_field(fieldname)
                except KeyError:
                    continue
                if r.lowleveltype == Void:
                    continue
                base._setup_immutable_field_list()
                if base.object_type._immutable_field(mangled):
                    continue
                # 'fieldname' is a mutable, non-Void field in the parent
                if is_self_immutable:
                    raise ImmutableConflictError(
                        "class %r has _immutable_=True, but parent class %r "
                        "defines (at least) the mutable field %r" %
                        (self, base, fieldname))
                if (fieldname in self.immutable_field_set
                        or (fieldname + '?') in self.immutable_field_set):
                    raise ImmutableConflictError(
                        "field %r is defined mutable in class %r, but "
                        "listed in _immutable_fields_ in subclass %r" %
                        (fieldname, base, self))

    def hook_access_field(self, vinst, cname, llops, flags):
        pass  # for virtualizables; see rvirtualizable.py

    def hook_setfield(self, vinst, fieldname, llops):
        if self.is_quasi_immutable(fieldname):
            c_fieldname = inputconst(Void, 'mutate_' + fieldname)
            llops.genop('jit_force_quasi_immutable', [vinst, c_fieldname])

    def is_quasi_immutable(self, fieldname):
        search1 = fieldname + '?'
        search2 = fieldname + '?[*]'
        rbase = self
        while rbase.classdef is not None:
            if (search1 in rbase.immutable_field_set
                    or search2 in rbase.immutable_field_set):
                return True
            rbase = rbase.rbase
        return False

    def new_instance(self, llops, classcallhop=None, nonmovable=False):
        """Build a new instance, without calling __init__."""
        flavor = self.gcflavor
        flags = {'flavor': flavor}
        if nonmovable:
            flags['nonmovable'] = True
        ctype = inputconst(Void, self.object_type)
        cflags = inputconst(Void, flags)
        vlist = [ctype, cflags]
        vptr = llops.genop('malloc', vlist, resulttype=Ptr(self.object_type))
        ctypeptr = inputconst(CLASSTYPE, self.rclass.getvtable())
        self.setfield(vptr, '__class__', ctypeptr, llops)
        if self.has_special_memory_pressure(self.object_type):
            self.setfield(vptr, 'special_memory_pressure',
                          inputconst(lltype.Signed, 0), llops)
        # initialize instance attributes from their defaults from the class
        if self.classdef is not None:
            flds = self.allinstancefields.keys()
            flds.sort()
            for fldname in flds:
                if fldname == '__class__':
                    continue
                mangled_name, r = self.allinstancefields[fldname]
                if r.lowleveltype is Void:
                    continue
                value = self.classdef.classdesc.read_attribute(fldname, None)
                if value is not None:
                    ll_value = r.convert_desc_or_const(value)
                    # don't write NULL GC pointers: we know that the malloc
                    # done above initialized at least the GC Ptr fields to
                    # NULL already, and that's true for all our GCs
                    if (isinstance(r.lowleveltype, Ptr)
                            and r.lowleveltype.TO._gckind == 'gc'
                            and not ll_value):
                        continue
                    cvalue = inputconst(r.lowleveltype, ll_value)
                    self.setfield(vptr,
                                  fldname,
                                  cvalue,
                                  llops,
                                  flags={'access_directly': True})
        return vptr

    def convert_const(self, value):
        if value is None:
            return self.null_instance()
        if isinstance(value, types.MethodType):
            value = value.im_self  # bound method -> instance
        bk = self.rtyper.annotator.bookkeeper
        try:
            classdef = bk.getuniqueclassdef(value.__class__)
        except KeyError:
            raise TyperError("no classdef: %r" % (value.__class__, ))
        if classdef != self.classdef:
            # if the class does not match exactly, check that 'value' is an
            # instance of a subclass and delegate to that InstanceRepr
            if classdef.commonbase(self.classdef) != self.classdef:
                raise TyperError("not an instance of %r: %r" %
                                 (self.classdef.name, value))
            rinstance = getinstancerepr(self.rtyper, classdef)
            result = rinstance.convert_const(value)
            return self.upcast(result)
        # common case
        return self.convert_const_exact(value)

    def convert_const_exact(self, value):
        try:
            return self.iprebuiltinstances[value]
        except KeyError:
            self.setup()
            result = self.create_instance()
            self.iprebuiltinstances[value] = result
            self.initialize_prebuilt_instance(value, self.classdef, result)
            return result

    def get_reusable_prebuilt_instance(self):
        "Get a dummy prebuilt instance.  Multiple calls reuse the same one."
        try:
            return self._reusable_prebuilt_instance
        except AttributeError:
            self.setup()
            result = self.create_instance()
            self._reusable_prebuilt_instance = result
            self.initialize_prebuilt_data(Ellipsis, self.classdef, result)
            return result

    _initialize_data_flattenrec = FlattenRecursion()

    def initialize_prebuilt_instance(self, value, classdef, result):
        # must fill in the hash cache before the other ones
        # (see test_circular_hash_initialization)
        self._initialize_data_flattenrec(self.initialize_prebuilt_data, value,
                                         classdef, result)

    def get_ll_hash_function(self):
        return ll_inst_hash

    get_ll_fasthash_function = get_ll_hash_function

    def rtype_type(self, hop):
        if hop.s_result.is_constant():
            return hop.inputconst(hop.r_result, hop.s_result.const)
        instance_repr = self.common_repr()
        vinst, = hop.inputargs(instance_repr)
        if hop.args_s[0].can_be_none():
            return hop.gendirectcall(ll_inst_type, vinst)
        else:
            return instance_repr.getfield(vinst, '__class__', hop.llops)

    def rtype_getattr(self, hop):
        if hop.s_result.is_constant():
            return hop.inputconst(hop.r_result, hop.s_result.const)
        attr = hop.args_s[1].const
        vinst, vattr = hop.inputargs(self, Void)
        if attr == '__class__' and hop.r_result.lowleveltype is Void:
            # special case for when the result of '.__class__' is a constant
            [desc] = hop.s_result.descriptions
            return hop.inputconst(Void, desc.pyobj)
        if attr in self.allinstancefields:
            return self.getfield(vinst,
                                 attr,
                                 hop.llops,
                                 flags=hop.args_s[0].flags)
        elif attr in self.rclass.allmethods:
            # special case for methods: represented as their 'self' only
            # (see MethodsPBCRepr)
            return hop.r_result.get_method_from_instance(
                self, vinst, hop.llops)
        else:
            vcls = self.getfield(vinst, '__class__', hop.llops)
            return self.rclass.getclsfield(vcls, attr, hop.llops)

    def rtype_setattr(self, hop):
        attr = hop.args_s[1].const
        r_value = self.getfieldrepr(attr)
        vinst, vattr, vvalue = hop.inputargs(self, Void, r_value)
        self.setfield(vinst,
                      attr,
                      vvalue,
                      hop.llops,
                      flags=hop.args_s[0].flags)

    def rtype_bool(self, hop):
        vinst, = hop.inputargs(self)
        return hop.genop('ptr_nonzero', [vinst], resulttype=Bool)

    def ll_str(self, i):  # doesn't work for non-gc classes!
        from rpython.rtyper.lltypesystem.ll_str import ll_int2hex
        from rpython.rlib.rarithmetic import r_uint
        if not i:
            return rstr.conststr("NULL")
        instance = cast_pointer(OBJECTPTR, i)
        # Two choices: the first gives a fast answer but it can change
        # (typically only once) during the life of the object.
        #uid = r_uint(cast_ptr_to_int(i))
        uid = r_uint(llop.gc_id(lltype.Signed, i))
        #
        res = rstr.conststr("<")
        res = rstr.ll_strconcat(res, instance.typeptr.name)
        res = rstr.ll_strconcat(res, rstr.conststr(" object at 0x"))
        res = rstr.ll_strconcat(res, ll_int2hex(uid, False))
        res = rstr.ll_strconcat(res, rstr.conststr(">"))
        return res

    def get_ll_eq_function(self):
        return None  # defaults to compare by identity ('==' on pointers)

    def can_ll_be_null(self, s_value):
        return s_value.can_be_none()

    @staticmethod
    def check_graph_of_del_does_not_call_too_much(rtyper, graph):
        # RPython-level __del__() methods should not do "too much".
        # In the PyPy Python interpreter, they usually do simple things
        # like file.__del__() closing the file descriptor; or if they
        # want to do more like call an app-level __del__() method, they
        # enqueue the object instead, and the actual call is done later.
        #
        # Here, as a quick way to check "not doing too much", we check
        # that from no RPython-level __del__() method we can reach a
        # JitDriver.
        #
        # XXX wrong complexity, but good enough because the set of
        # reachable graphs should be small
        callgraph = rtyper.annotator.translator.callgraph.values()
        seen = {graph: None}
        while True:
            oldlength = len(seen)
            for caller, callee in callgraph:
                if caller in seen and callee not in seen:
                    func = getattr(callee, 'func', None)
                    if getattr(func, '_dont_reach_me_in_del_', False):
                        lst = [str(callee)]
                        g = caller
                        while g:
                            lst.append(str(g))
                            g = seen.get(g)
                        lst.append('')
                        raise TyperError("the RPython-level __del__() method "
                                         "in %r calls:%s" %
                                         (graph, '\n\t'.join(lst[::-1])))
                    if getattr(func, '_cannot_really_call_random_things_',
                               False):
                        continue
                    seen[callee] = caller
            if len(seen) == oldlength:
                break

    def common_repr(self):  # -> object or nongcobject reprs
        return getinstancerepr(self.rtyper, None, self.gcflavor)

    def _get_field(self, attr):
        return self.fields[attr]

    def null_instance(self):
        return nullptr(self.object_type)

    def upcast(self, result):
        return cast_pointer(self.lowleveltype, result)

    def create_instance(self):
        return malloc(self.object_type, flavor=self.gcflavor, immortal=True)

    def initialize_prebuilt_data(self, value, classdef, result):
        if self.classdef is not None:
            # recursively build the parent part of the instance
            self.rbase.initialize_prebuilt_data(value, classdef, result.super)
            # then add instance attributes from this level
            for name, (mangled_name, r) in self.fields.items():
                if r.lowleveltype is Void:
                    llattrvalue = None
                else:
                    try:
                        attrvalue = getattr(value, name)
                    except AttributeError:
                        attrvalue = self.classdef.classdesc.read_attribute(
                            name, None)
                        if attrvalue is None:
                            # Ellipsis from get_reusable_prebuilt_instance()
                            #if value is not Ellipsis:
                            #warning("prebuilt instance %r has no "
                            #        "attribute %r" % (value, name))
                            llattrvalue = r.lowleveltype._defl()
                        else:
                            llattrvalue = r.convert_desc_or_const(attrvalue)
                    else:
                        llattrvalue = r.convert_const(attrvalue)
                setattr(result, mangled_name, llattrvalue)
        else:
            # OBJECT part
            rclass = getclassrepr(self.rtyper, classdef)
            result.typeptr = rclass.getvtable()

    def getfieldrepr(self, attr):
        """Return the repr used for the given attribute."""
        if attr in self.fields:
            mangled_name, r = self.fields[attr]
            return r
        else:
            if self.classdef is None:
                raise MissingRTypeAttribute(attr)
            return self.rbase.getfieldrepr(attr)

    def getfield(self, vinst, attr, llops, force_cast=False, flags={}):
        """Read the given attribute (or __class__ for the type) of 'vinst'."""
        if attr in self.fields:
            mangled_name, r = self.fields[attr]
            cname = inputconst(Void, mangled_name)
            if force_cast:
                vinst = llops.genop('cast_pointer', [vinst], resulttype=self)
            self.hook_access_field(vinst, cname, llops, flags)
            return llops.genop('getfield', [vinst, cname], resulttype=r)
        else:
            if self.classdef is None:
                raise MissingRTypeAttribute(attr)
            return self.rbase.getfield(vinst,
                                       attr,
                                       llops,
                                       force_cast=True,
                                       flags=flags)

    def setfield(self, vinst, attr, vvalue, llops, force_cast=False, flags={}):
        """Write the given attribute (or __class__ for the type) of 'vinst'."""
        if attr in self.fields:
            mangled_name, r = self.fields[attr]
            cname = inputconst(Void, mangled_name)
            if force_cast:
                vinst = llops.genop('cast_pointer', [vinst], resulttype=self)
            self.hook_access_field(vinst, cname, llops, flags)
            self.hook_setfield(vinst, attr, llops)
            llops.genop('setfield', [vinst, cname, vvalue])
        else:
            if self.classdef is None:
                raise MissingRTypeAttribute(attr)
            self.rbase.setfield(vinst,
                                attr,
                                vvalue,
                                llops,
                                force_cast=True,
                                flags=flags)

    def rtype_isinstance(self, hop):
        class_repr = get_type_repr(hop.rtyper)
        instance_repr = self.common_repr()

        v_obj, v_cls = hop.inputargs(instance_repr, class_repr)
        if isinstance(v_cls, Constant):
            cls = v_cls.value
            llf, llf_nonnull = make_ll_isinstance(self.rtyper, cls)
            if hop.args_s[0].can_be_None:
                return hop.gendirectcall(llf, v_obj)
            else:
                return hop.gendirectcall(llf_nonnull, v_obj)
        else:
            return hop.gendirectcall(ll_isinstance, v_obj, v_cls)
Exemple #3
0
class ClassDef(object):
    "Wraps a user class."

    def __init__(self, bookkeeper, classdesc):
        self.bookkeeper = bookkeeper
        self.attrs = {}  # {name: Attribute}
        self.classdesc = classdesc
        self.name = self.classdesc.name
        self.shortname = self.name.split('.')[-1]
        self.subdefs = []
        self.attr_sources = {}  # {name: list-of-sources}
        self.read_locations_of__class__ = {}
        self.repr = None
        self.extra_access_sets = {}
        self.instances_seen = set()

        if classdesc.basedesc:
            self.basedef = classdesc.basedesc.getuniqueclassdef()
            self.basedef.subdefs.append(self)
            self.basedef.see_new_subclass(self)
        else:
            self.basedef = None

        self.parentdefs = dict.fromkeys(self.getmro())

    def setup(self, sources):
        # collect the (supposed constant) class attributes
        for name, source in sources.items():
            self.add_source_for_attribute(name, source)
        if self.bookkeeper:
            self.bookkeeper.event('classdef_setup', self)

    def s_getattr(self, attrname, flags):
        attrdef = self.find_attribute(attrname)
        s_result = attrdef.s_value
        # hack: if s_result is a set of methods, discard the ones
        #       that can't possibly apply to an instance of self.
        # XXX do it more nicely
        if isinstance(s_result, SomePBC):
            s_result = self.lookup_filter(s_result, attrname, flags)
        elif isinstance(s_result, SomeImpossibleValue):
            self.check_missing_attribute_update(attrname)
            # blocking is harmless if the attribute is explicitly listed
            # in the class or a parent class.
            for basedef in self.getmro():
                if basedef.classdesc.all_enforced_attrs is not None:
                    if attrname in basedef.classdesc.all_enforced_attrs:
                        raise HarmlesslyBlocked("get enforced attr")
        elif isinstance(s_result, SomeList):
            s_result = self.classdesc.maybe_return_immutable_list(
                attrname, s_result)
        return s_result

    def add_source_for_attribute(self, attr, source):
        """Adds information about a constant source for an attribute.
        """
        for cdef in self.getmro():
            if attr in cdef.attrs:
                # the Attribute() exists already for this class (or a parent)
                attrdef = cdef.attrs[attr]
                s_prev_value = attrdef.s_value
                attrdef.add_constant_source(self, source)
                # we should reflow from all the reader's position,
                # but as an optimization we try to see if the attribute
                # has really been generalized
                if attrdef.s_value != s_prev_value:
                    self.bookkeeper.update_attr(cdef, attrdef)
                return
        else:
            # remember the source in self.attr_sources
            sources = self.attr_sources.setdefault(attr, [])
            sources.append(source)
            # register the source in any Attribute found in subclasses,
            # to restore invariant (III)
            # NB. add_constant_source() may discover new subdefs but the
            #     right thing will happen to them because self.attr_sources
            #     was already updated
            if not source.instance_level:
                for subdef in self.getallsubdefs():
                    if attr in subdef.attrs:
                        attrdef = subdef.attrs[attr]
                        s_prev_value = attrdef.s_value
                        attrdef.add_constant_source(self, source)
                        if attrdef.s_value != s_prev_value:
                            self.bookkeeper.update_attr(subdef, attrdef)

    def get_owner(self, attrname):
        """Return the classdef owning the attribute `attrname`."""
        for cdef in self.getmro():
            if attrname in cdef.attrs:
                return cdef
        else:
            return None

    def locate_attribute(self, attr):
        cdef = self.get_owner(attr)
        if cdef:
            return cdef
        else:
            self._generalize_attr(attr, s_value=None)
            return self

    def find_attribute(self, attr):
        return self.locate_attribute(attr).attrs[attr]

    def __repr__(self):
        return "<ClassDef '%s'>" % (self.name, )

    def has_no_attrs(self):
        for clsdef in self.getmro():
            if clsdef.attrs:
                return False
        return True

    def commonbase(self, other):
        while other is not None and not self.issubclass(other):
            other = other.basedef
        return other

    def getmro(self):
        while self is not None:
            yield self
            self = self.basedef

    def issubclass(self, other):
        return self.classdesc.issubclass(other.classdesc)

    def getallsubdefs(self):
        pending = [self]
        seen = {}
        for clsdef in pending:
            yield clsdef
            for sub in clsdef.subdefs:
                if sub not in seen:
                    pending.append(sub)
                    seen[sub] = True

    def _generalize_attr(self, attr, s_value):
        # create the Attribute and do the generalization asked for
        newattr = Attribute(attr)
        if s_value:
            newattr.s_value = s_value

        # remove the attribute from subclasses -- including us!
        # invariant (I)
        constant_sources = []  # [(classdef-of-origin, source)]
        for subdef in self.getallsubdefs():
            if attr in subdef.attrs:
                subattr = subdef.attrs[attr]
                newattr.merge(subattr, classdef=self)
                del subdef.attrs[attr]
            if attr in subdef.attr_sources:
                # accumulate attr_sources for this attribute from all subclasses
                lst = subdef.attr_sources[attr]
                for source in lst:
                    constant_sources.append((subdef, source))
                del lst[:]  # invariant (II)

        # accumulate attr_sources for this attribute from all parents, too
        # invariant (III)
        for superdef in self.getmro():
            if attr in superdef.attr_sources:
                for source in superdef.attr_sources[attr]:
                    if not source.instance_level:
                        constant_sources.append((superdef, source))

        # store this new Attribute, generalizing the previous ones from
        # subclasses -- invariant (A)
        self.attrs[attr] = newattr

        # add the values of the pending constant attributes
        # completes invariants (II) and (III)
        for origin_classdef, source in constant_sources:
            newattr.add_constant_source(origin_classdef, source)

        # reflow from all read positions
        self.bookkeeper.update_attr(self, newattr)

    def generalize_attr(self, attr, s_value=None):
        # if the attribute exists in a superclass, generalize there,
        # as imposed by invariant (I)
        clsdef = self.get_owner(attr)
        if clsdef:
            clsdef._generalize_attr(attr, s_value)
        else:
            self._generalize_attr(attr, s_value)

    def about_attribute(self, name):
        """This is the interface for the code generators to ask about
           the annotation given to a attribute."""
        for cdef in self.getmro():
            if name in cdef.attrs:
                s_result = cdef.attrs[name].s_value
                if s_result != s_ImpossibleValue:
                    return s_result
                else:
                    return None
        return None

    def lookup_filter(self, pbc, name=None, flags={}):
        """Selects the methods in the pbc that could possibly be seen by
        a lookup performed on an instance of 'self', removing the ones
        that cannot appear.
        """
        d = []
        uplookup = None
        updesc = None
        for desc in pbc.descriptions:
            # pick methods but ignore already-bound methods, which can come
            # from an instance attribute
            if (isinstance(desc, MethodDesc) and desc.selfclassdef is None):
                methclassdef = desc.originclassdef
                if methclassdef is not self and methclassdef.issubclass(self):
                    pass  # subclasses methods are always candidates
                elif self.issubclass(methclassdef):
                    # upward consider only the best match
                    if uplookup is None or methclassdef.issubclass(uplookup):
                        uplookup = methclassdef
                        updesc = desc
                    continue
                    # for clsdef1 >= clsdef2, we guarantee that
                    # clsdef1.lookup_filter(pbc) includes
                    # clsdef2.lookup_filter(pbc) (see formal proof...)
                else:
                    continue  # not matching
                # bind the method by giving it a selfclassdef.  Use the
                # more precise subclass that it's coming from.
                desc = desc.bind_self(methclassdef, flags)
            d.append(desc)
        if uplookup is not None:
            d.append(updesc.bind_self(self, flags))

        if d:
            return SomePBC(d, can_be_None=pbc.can_be_None)
        elif pbc.can_be_None:
            return s_None
        else:
            return s_ImpossibleValue

    def check_missing_attribute_update(self, name):
        # haaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaack
        # sometimes, new methods can show up on classes, added
        # e.g. by W_TypeObject._freeze_() -- the multimethod
        # implementations.  Check that here...
        found = False
        parents = list(self.getmro())
        parents.reverse()
        for base in parents:
            if base.check_attr_here(name):
                found = True
        return found

    def check_attr_here(self, name):
        source = self.classdesc.find_source_for(name)
        if source is not None:
            # oups! new attribute showed up
            self.add_source_for_attribute(name, source)
            # maybe it also showed up in some subclass?
            for subdef in self.getallsubdefs():
                if subdef is not self:
                    subdef.check_attr_here(name)
            return True
        else:
            return False

    _see_instance_flattenrec = FlattenRecursion()

    def see_instance(self, x):
        assert isinstance(x, self.classdesc.pyobj)
        key = Hashable(x)
        if key in self.instances_seen:
            return
        self.instances_seen.add(key)
        self.bookkeeper.event('mutable', x)
        source = InstanceSource(self.bookkeeper, x)

        def delayed():
            for attr in source.all_instance_attributes():
                self.add_source_for_attribute(attr, source)
                # ^^^ can trigger reflowing

        self._see_instance_flattenrec(delayed)

    def see_new_subclass(self, classdef):
        for position in self.read_locations_of__class__:
            self.bookkeeper.annotator.reflowfromposition(position)
        if self.basedef is not None:
            self.basedef.see_new_subclass(classdef)

    def read_attr__class__(self):
        position = self.bookkeeper.position_key
        self.read_locations_of__class__[position] = True
        return SomePBC([subdef.classdesc for subdef in self.getallsubdefs()])

    def _freeze_(self):
        raise Exception("ClassDefs are used as knowntype for instances but "
                        "cannot be used as immutablevalue arguments directly")
Exemple #4
0
class Bookkeeper(object):
    """The log of choices that have been made while analysing the operations.
    It ensures that the same 'choice objects' will be returned if we ask
    again during reflowing.  Like ExecutionContext, there is an implicit
    Bookkeeper that can be obtained from a thread-local variable.

    Currently used for factories and user-defined classes."""
    def __setstate__(self, dic):
        self.__dict__.update(dic)  # normal action
        self.register_builtins()

    def __init__(self, annotator):
        self.annotator = annotator
        self.policy = annotator.policy
        self.descs = {}  # map Python objects to their XxxDesc wrappers
        self.methoddescs = {}  # map (funcdesc, classdef) to the MethodDesc
        self.classdefs = []  # list of all ClassDefs
        self.seen_mutable = {}
        self.listdefs = {}  # map position_keys to ListDefs
        self.dictdefs = {}  # map position_keys to DictDefs
        self.immutable_cache = {}

        self.classpbc_attr_families = {
        }  # {'attr': UnionFind(ClassAttrFamily)}
        self.frozenpbc_attr_families = UnionFind(description.FrozenAttrFamily)
        self.pbc_maximal_call_families = UnionFind(description.CallFamily)

        self.emulated_pbc_calls = {}
        self.all_specializations = {}  # {FuncDesc: specialization-info}
        self.pending_specializations = []  # list of callbacks
        self.external_class_cache = {}  # cache of ExternalType classes

        self.needs_generic_instantiate = {}
        self.thread_local_fields = set()

        self.register_builtins()

    def register_builtins(self):
        import rpython.annotator.builtin  # for side-effects
        from rpython.annotator.exception import standardexceptions
        for cls in standardexceptions:
            self.getuniqueclassdef(cls)

    def enter(self, position_key):
        """Start of an operation.
        The operation is uniquely identified by the given key."""
        assert not hasattr(self, 'position_key'), "don't call enter() nestedly"
        self.position_key = position_key
        TLS.bookkeeper = self

    def leave(self):
        """End of an operation."""
        del TLS.bookkeeper
        del self.position_key

    def compute_at_fixpoint(self):
        # getbookkeeper() needs to work during this function, so provide
        # one with a dummy position
        self.enter(None)
        try:

            def call_sites():
                newblocks = self.annotator.added_blocks
                if newblocks is None:
                    newblocks = self.annotator.annotated  # all of them
                annotation = self.annotator.annotation
                for block in newblocks:
                    for op in block.operations:
                        if op.opname in ('simple_call', 'call_args'):
                            yield op

                        # some blocks are partially annotated
                        if annotation(op.result) is None:
                            break  # ignore the unannotated part

            for call_op in call_sites():
                self.consider_call_site(call_op)

            for pbc, args_s in self.emulated_pbc_calls.itervalues():
                args = simple_args(args_s)
                pbc.consider_call_site(args, s_ImpossibleValue, None)
            self.emulated_pbc_calls = {}
        finally:
            self.leave()

    def check_no_flags_on_instances(self):
        # sanity check: no flags attached to heap stored instances
        seen = set()

        def check_no_flags(s_value_or_def):
            if isinstance(s_value_or_def, SomeInstance):
                assert not s_value_or_def.flags, "instance annotation with flags escaped to the heap"
                check_no_flags(s_value_or_def.classdef)
            elif isinstance(s_value_or_def, SomeList):
                check_no_flags(s_value_or_def.listdef.listitem)
            elif isinstance(s_value_or_def, SomeDict):
                check_no_flags(s_value_or_def.dictdef.dictkey)
                check_no_flags(s_value_or_def.dictdef.dictvalue)
            elif isinstance(s_value_or_def, SomeTuple):
                for s_item in s_value_or_def.items:
                    check_no_flags(s_item)
            elif isinstance(s_value_or_def, ClassDef):
                if s_value_or_def in seen:
                    return
                seen.add(s_value_or_def)
                for attr in s_value_or_def.attrs.itervalues():
                    s_attr = attr.s_value
                    check_no_flags(s_attr)
            elif isinstance(s_value_or_def, ListItem):
                if s_value_or_def in seen:
                    return
                seen.add(s_value_or_def)
                check_no_flags(s_value_or_def.s_value)

        for clsdef in self.classdefs:
            check_no_flags(clsdef)

    def consider_call_site(self, call_op):
        from rpython.rtyper.llannotation import SomeLLADTMeth, lltype_to_annotation
        annotation = self.annotator.annotation
        s_callable = annotation(call_op.args[0])
        args_s = [annotation(arg) for arg in call_op.args[1:]]
        if isinstance(s_callable, SomeLLADTMeth):
            adtmeth = s_callable
            s_callable = self.immutablevalue(adtmeth.func)
            args_s = [lltype_to_annotation(adtmeth.ll_ptrtype)] + args_s
        if isinstance(s_callable, SomePBC):
            s_result = annotation(call_op.result)
            if s_result is None:
                s_result = s_ImpossibleValue
            args = call_op.build_args(args_s)
            s_callable.consider_call_site(args, s_result, call_op)

    def getuniqueclassdef(self, cls):
        """Get the ClassDef associated with the given user cls.
        Avoid using this!  It breaks for classes that must be specialized.
        """
        assert cls is not object
        desc = self.getdesc(cls)
        return desc.getuniqueclassdef()

    def getlistdef(self, **flags_if_new):
        """Get the ListDef associated with the current position."""
        try:
            listdef = self.listdefs[self.position_key]
        except KeyError:
            listdef = self.listdefs[self.position_key] = ListDef(self)
            listdef.listitem.__dict__.update(flags_if_new)
        return listdef

    def newlist(self, *s_values, **flags):
        """Make a SomeList associated with the current position, general
        enough to contain the s_values as items."""
        listdef = self.getlistdef(**flags)
        for s_value in s_values:
            listdef.generalize(s_value)
        if flags:
            assert flags.keys() == ['range_step']
            listdef.generalize_range_step(flags['range_step'])
        return SomeList(listdef)

    def getdictdef(self, is_r_dict=False, force_non_null=False):
        """Get the DictDef associated with the current position."""
        try:
            dictdef = self.dictdefs[self.position_key]
        except KeyError:
            dictdef = DictDef(self,
                              is_r_dict=is_r_dict,
                              force_non_null=force_non_null)
            self.dictdefs[self.position_key] = dictdef
        return dictdef

    def newdict(self):
        """Make a so-far empty SomeDict associated with the current
        position."""
        return SomeDict(self.getdictdef())

    def immutablevalue(self, x):
        """The most precise SomeValue instance that contains the
        immutable value x."""
        # convert unbound methods to the underlying function
        if hasattr(x, 'im_self') and x.im_self is None:
            x = x.im_func
            assert not hasattr(x, 'im_self')
        tp = type(x)
        if issubclass(tp, Symbolic):  # symbolic constants support
            result = x.annotation()
            result.const_box = Constant(x)
            return result
        if tp is bool:
            result = SomeBool()
        elif tp is int:
            result = SomeInteger(nonneg=x >= 0)
        elif tp is long:
            if -sys.maxint - 1 <= x <= sys.maxint:
                x = int(x)
                result = SomeInteger(nonneg=x >= 0)
            else:
                raise Exception("seeing a prebuilt long (value %s)" % hex(x))
        elif issubclass(tp, str):  # py.lib uses annotated str subclasses
            no_nul = not '\x00' in x
            if len(x) == 1:
                result = SomeChar(no_nul=no_nul)
            else:
                result = SomeString(no_nul=no_nul)
        elif tp is unicode:
            if len(x) == 1:
                result = SomeUnicodeCodePoint()
            else:
                result = SomeUnicodeString()
        elif tp is bytearray:
            result = SomeByteArray()
        elif tp is tuple:
            result = SomeTuple(items=[self.immutablevalue(e) for e in x])
        elif tp is float:
            result = SomeFloat()
        elif tp is list:
            key = Constant(x)
            try:
                return self.immutable_cache[key]
            except KeyError:
                result = SomeList(ListDef(self, s_ImpossibleValue))
                self.immutable_cache[key] = result
                for e in x:
                    result.listdef.generalize(self.immutablevalue(e))
                result.const_box = key
                return result
        elif (tp is dict or tp is r_dict or tp is SomeOrderedDict.knowntype
              or tp is r_ordereddict):
            key = Constant(x)
            try:
                return self.immutable_cache[key]
            except KeyError:
                if tp is SomeOrderedDict.knowntype or tp is r_ordereddict:
                    cls = SomeOrderedDict
                else:
                    cls = SomeDict
                is_r_dict = issubclass(tp, r_dict)
                result = cls(
                    DictDef(self,
                            s_ImpossibleValue,
                            s_ImpossibleValue,
                            is_r_dict=is_r_dict))
                self.immutable_cache[key] = result
                if is_r_dict:
                    s_eqfn = self.immutablevalue(x.key_eq)
                    s_hashfn = self.immutablevalue(x.key_hash)
                    result.dictdef.dictkey.update_rdict_annotations(
                        s_eqfn, s_hashfn)
                seen_elements = 0
                while seen_elements != len(x):
                    items = x.items()
                    for ek, ev in items:
                        result.dictdef.generalize_key(self.immutablevalue(ek))
                        result.dictdef.generalize_value(
                            self.immutablevalue(ev))
                        result.dictdef.seen_prebuilt_key(ek)
                    seen_elements = len(items)
                    # if the dictionary grew during the iteration,
                    # start over again
                result.const_box = key
                return result
        elif tp is weakref.ReferenceType:
            x1 = x()
            if x1 is None:
                result = SomeWeakRef(None)  # dead weakref
            else:
                s1 = self.immutablevalue(x1)
                assert isinstance(s1, SomeInstance)
                result = SomeWeakRef(s1.classdef)
        elif tp is property:
            return SomeProperty(x)
        elif ishashable(x) and x in BUILTIN_ANALYZERS:
            _module = getattr(x, "__module__", "unknown")
            result = SomeBuiltin(BUILTIN_ANALYZERS[x],
                                 methodname="%s.%s" % (_module, x.__name__))
        elif extregistry.is_registered(x):
            entry = extregistry.lookup(x)
            result = entry.compute_annotation_bk(self)
        elif tp is type:
            result = SomeConstantType(x, self)
        elif callable(x):
            if hasattr(x, 'im_self') and hasattr(x, 'im_func'):
                # on top of PyPy, for cases like 'l.append' where 'l' is a
                # global constant list, the find_method() returns non-None
                s_self = self.immutablevalue(x.im_self)
                result = s_self.find_method(x.im_func.__name__)
            elif hasattr(x, '__self__') and x.__self__ is not None:
                # for cases like 'l.append' where 'l' is a global constant list
                s_self = self.immutablevalue(x.__self__)
                result = s_self.find_method(x.__name__)
                assert result is not None
            else:
                result = None
            if result is None:
                result = SomePBC([self.getdesc(x)])
        elif hasattr(x, '_freeze_'):
            assert x._freeze_() is True
            # user-defined classes can define a method _freeze_(), which
            # is called when a prebuilt instance is found.  If the method
            # returns True, the instance is considered immutable and becomes
            # a SomePBC().  Otherwise it's just SomeInstance().
            result = SomePBC([self.getdesc(x)])
        elif hasattr(x, '__class__') \
                 and x.__class__.__module__ != '__builtin__':
            if hasattr(x, '_cleanup_'):
                x._cleanup_()
            self.see_mutable(x)
            result = SomeInstance(self.getuniqueclassdef(x.__class__))
        elif x is None:
            return s_None
        else:
            raise Exception("Don't know how to represent %r" % (x, ))
        result.const = x
        return result

    def getdesc(self, pyobj):
        # get the XxxDesc wrapper for the given Python object, which must be
        # one of:
        #  * a user-defined Python function
        #  * a Python type or class (but not a built-in one like 'int')
        #  * a user-defined bound or unbound method object
        #  * a frozen pre-built constant (with _freeze_() == True)
        #  * a bound method of a frozen pre-built constant
        try:
            return self.descs[pyobj]
        except KeyError:
            if isinstance(pyobj, types.FunctionType):
                result = description.FunctionDesc(self, pyobj)
            elif isinstance(pyobj, (type, types.ClassType)):
                if pyobj is object:
                    raise Exception("ClassDesc for object not supported")
                if pyobj.__module__ == '__builtin__':  # avoid making classdefs for builtin types
                    result = self.getfrozen(pyobj)
                else:
                    result = description.ClassDesc(self, pyobj)
            elif isinstance(pyobj, types.MethodType):
                if pyobj.im_self is None:  # unbound
                    return self.getdesc(pyobj.im_func)
                if hasattr(pyobj.im_self, '_cleanup_'):
                    pyobj.im_self._cleanup_()
                if hasattr(pyobj.im_self, '_freeze_'):  # method of frozen
                    assert pyobj.im_self._freeze_() is True
                    result = description.MethodOfFrozenDesc(
                        self,
                        self.getdesc(pyobj.im_func),  # funcdesc
                        self.getdesc(pyobj.im_self))  # frozendesc
                else:  # regular method
                    origincls, name = origin_of_meth(pyobj)
                    self.see_mutable(pyobj.im_self)
                    assert pyobj == getattr(
                        pyobj.im_self, name), ("%r is not %s.%s ??" %
                                               (pyobj, pyobj.im_self, name))
                    # emulate a getattr to make sure it's on the classdef
                    classdef = self.getuniqueclassdef(pyobj.im_class)
                    classdef.find_attribute(name)
                    result = self.getmethoddesc(
                        self.getdesc(pyobj.im_func),  # funcdesc
                        self.getuniqueclassdef(origincls),  # originclassdef
                        classdef,  # selfclassdef
                        name)
            else:
                # must be a frozen pre-built constant, but let's check
                if hasattr(pyobj, '_freeze_'):
                    assert pyobj._freeze_() is True
                else:
                    if hasattr(pyobj, '__call__'):
                        msg = "object with a __call__ is not RPython"
                    else:
                        msg = "unexpected prebuilt constant"
                    raise Exception("%s: %r" % (msg, pyobj))
                result = self.getfrozen(pyobj)
            self.descs[pyobj] = result
            return result

    def have_seen(self, x):
        # this might need to expand some more.
        if x in self.descs:
            return True
        elif (x.__class__, x) in self.seen_mutable:
            return True
        else:
            return False

    def getfrozen(self, pyobj):
        return description.FrozenDesc(self, pyobj)

    def getmethoddesc(self,
                      funcdesc,
                      originclassdef,
                      selfclassdef,
                      name,
                      flags={}):
        flagskey = flags.items()
        flagskey.sort()
        key = funcdesc, originclassdef, selfclassdef, name, tuple(flagskey)
        try:
            return self.methoddescs[key]
        except KeyError:
            result = description.MethodDesc(self, funcdesc, originclassdef,
                                            selfclassdef, name, flags)
            self.methoddescs[key] = result
            return result

    _see_mutable_flattenrec = FlattenRecursion()

    def see_mutable(self, x):
        key = (x.__class__, x)
        if key in self.seen_mutable:
            return
        clsdef = self.getuniqueclassdef(x.__class__)
        self.seen_mutable[key] = True
        self.event('mutable', x)
        source = InstanceSource(self, x)

        def delayed():
            for attr in source.all_instance_attributes():
                clsdef.add_source_for_attribute(attr, source)
                # ^^^ can trigger reflowing

        self._see_mutable_flattenrec(delayed)

    def valueoftype(self, t):
        return annotationoftype(t, self)

    def get_classpbc_attr_families(self, attrname):
        """Return the UnionFind for the ClassAttrFamilies corresponding to
        attributes of the given name.
        """
        map = self.classpbc_attr_families
        try:
            access_sets = map[attrname]
        except KeyError:
            access_sets = map[attrname] = UnionFind(
                description.ClassAttrFamily)
        return access_sets

    def pbc_getattr(self, pbc, s_attr):
        assert s_attr.is_constant()
        attr = s_attr.const

        descs = list(pbc.descriptions)
        first = descs[0]
        if len(descs) == 1:
            return first.s_read_attribute(attr)

        change = first.mergeattrfamilies(descs[1:], attr)
        attrfamily = first.getattrfamily(attr)

        position = self.position_key
        attrfamily.read_locations[position] = True

        actuals = []
        for desc in descs:
            actuals.append(desc.s_read_attribute(attr))
        s_result = unionof(*actuals)

        s_oldvalue = attrfamily.get_s_value(attr)
        attrfamily.set_s_value(attr, unionof(s_result, s_oldvalue))

        if change:
            for position in attrfamily.read_locations:
                self.annotator.reflowfromposition(position)

        if isinstance(s_result, SomeImpossibleValue):
            for desc in descs:
                try:
                    attrs = desc.read_attribute('_attrs_')
                except AttributeError:
                    continue
                if isinstance(attrs, Constant):
                    attrs = attrs.value
                if attr in attrs:
                    raise HarmlesslyBlocked("getattr on enforced attr")

        return s_result

    def pbc_call(self, pbc, args, emulated=None):
        """Analyse a call to a SomePBC() with the given args (list of
        annotations).
        """
        descs = list(pbc.descriptions)
        first = descs[0]
        first.mergecallfamilies(*descs[1:])

        if emulated is None:
            whence = self.position_key
            # fish the existing annotation for the result variable,
            # needed by some kinds of specialization.
            fn, block, i = self.position_key
            op = block.operations[i]
            s_previous_result = self.annotator.annotation(op.result)
            if s_previous_result is None:
                s_previous_result = s_ImpossibleValue
        else:
            if emulated is True:
                whence = None
            else:
                whence = emulated  # callback case
            op = None
            s_previous_result = s_ImpossibleValue

        def schedule(graph, inputcells):
            return self.annotator.recursivecall(graph, whence, inputcells)

        results = []
        for desc in descs:
            results.append(desc.pycall(schedule, args, s_previous_result, op))
        s_result = unionof(*results)
        return s_result

    def emulate_pbc_call(self,
                         unique_key,
                         pbc,
                         args_s,
                         replace=[],
                         callback=None):
        """For annotating some operation that causes indirectly a Python
        function to be called.  The annotation of the function is "pbc",
        and the list of annotations of arguments is "args_s".

        Can be called in various contexts, but from compute_annotation()
        or compute_result_annotation() of an ExtRegistryEntry, call it
        with both "unique_key" and "callback" set to
        "self.bookkeeper.position_key".  If there are several calls from
        the same operation, they need their own "unique_key", like
        (position_key, "first") and (position_key, "second").

        In general, "unique_key" should somehow uniquely identify where
        the call is in the source code, and "callback" can be either a
        position_key to reflow from when we see more general results,
        or a real callback function that will be called with arguments
        # "(annotator, called_graph)" whenever the result is generalized.

        "replace" can be set to a list of old unique_key values to
        forget now, because the given "unique_key" replaces them.
        """
        emulate_enter = not hasattr(self, 'position_key')
        if emulate_enter:
            self.enter(None)
        try:
            emulated_pbc_calls = self.emulated_pbc_calls
            prev = [unique_key]
            prev.extend(replace)
            for other_key in prev:
                if other_key in emulated_pbc_calls:
                    del emulated_pbc_calls[other_key]
            emulated_pbc_calls[unique_key] = pbc, args_s

            args = simple_args(args_s)
            if callback is None:
                emulated = True
            else:
                emulated = callback
            return self.pbc_call(pbc, args, emulated=emulated)
        finally:
            if emulate_enter:
                self.leave()

    def _find_current_op(self, opname=None, arity=None, pos=None, s_type=None):
        """ Find operation that is currently being annotated. Do some
        sanity checks to see whether the correct op was found."""
        # XXX XXX HACK HACK HACK
        fn, block, i = self.position_key
        op = block.operations[i]
        if opname is not None:
            assert op.opname == opname
        if arity is not None:
            assert len(op.args) == arity
        if pos is not None:
            assert self.annotator.binding(op.args[pos]) == s_type
        return op

    def whereami(self):
        return self.annotator.whereami(self.position_key)

    def event(self, what, x):
        return self.annotator.policy.event(self, what, x)

    def warning(self, msg):
        return self.annotator.warning(msg)