def main(scene_idx=0):

    #scene_idx = 0

    mapper_scene2z = get_mapper()
    mapper_scene2points = get_mapper_scene2points()
    Train_Scenes, Test_Scenes = get_train_test_scenes()
    scene_name = Test_Scenes[scene_idx]
    num_startPoints = len(mapper_scene2points[scene_name])
    num_steps = 50

    ## create test folder
    test_folder = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/test_IBVS'
    #approach_folder = '{}/gtCorrespondence_interMatrix_gtDepth_Vz_OmegaY'.format(test_folder)
    #create_folder(approach_folder)

    #scene_folder = '{}/{}'.format(approach_folder, scene_name)
    #create_folder(scene_folder)

    f = open('{}/{}_{}.txt'.format(test_folder, perception_rep, depth_method),
             'a')
    f.write('scene_name = {}\n'.format(scene_name))
    list_count_correct = []
    list_count_runs = []

    ## rrt functions
    ## first figure out how to sample points from rrt graph
    rrt_directory = '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt'.format(
        scene_name)
    path_finder = rrt.PathFinder(rrt_directory)
    path_finder.load()
    num_nodes = len(path_finder.nodes_x)
    free = cv2.imread(
        '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'
        .format(scene_name), 0)

    ## GibsonEnv setup
    ## For Gibson Env
    import gym, logging
    from mpi4py import MPI
    from gibson.envs.husky_env import HuskyNavigateEnv
    from baselines import logger
    import skimage.io
    from transforms3d.euler import euler2quat
    config_file = os.path.join(
        '/home/reza/Datasets/GibsonEnv/my_code/CVPR_workshop', 'env_yamls',
        '{}_navigate.yaml'.format(scene_name))
    env = HuskyNavigateEnv(config=config_file, gpu_count=1)
    obs = env.reset(
    )  ## this line is important otherwise there will be an error like 'AttributeError: 'HuskyNavigateEnv' object has no attribute 'potential''

    def get_obs(current_pose):
        pos, orn = func_pose2posAndorn(current_pose,
                                       mapper_scene2z[scene_name])
        env.robot.reset_new_pose(pos, orn)
        obs, _, _, _ = env.step(4)
        obs_rgb = obs['rgb_filled']
        obs_depth = obs['depth']
        return obs_rgb.copy(), obs_depth.copy()

    base_folder = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_{}'.format(
        'test')

    ## go through each point folder
    for point_idx in range(0, num_startPoints):
        #for point_idx in range(0, 1):
        print('point_idx = {}'.format(point_idx))

        #point_folder = '{}/point_{}'.format(scene_folder, point_idx)
        #create_folder(point_folder)

        ## read in start img and start pose
        point_image_folder = '{}/{}/point_{}'.format(base_folder, scene_name,
                                                     point_idx)
        point_pose_npy_file = np.load('{}/{}/point_{}_poses.npy'.format(
            base_folder, scene_name, point_idx))

        start_img = cv2.imread('{}/{}.png'.format(
            point_image_folder,
            point_pose_npy_file[0]['img_name']))[:, :, ::-1]
        start_pose = point_pose_npy_file[0]['pose']

        ## index 0 is the left image, so right_img_idx starts from index 1
        count_correct = 0
        list_correct_img_names = []
        list_whole_stat = []

        for right_img_idx in range(1, len(point_pose_npy_file)):
            #for right_img_idx in range(10, 11):
            flag_correct = False
            print('right_img_idx = {}'.format(right_img_idx))

            count_steps = 0

            current_pose = start_pose

            right_img_name = point_pose_npy_file[right_img_idx]['img_name']
            goal_pose = point_pose_npy_file[right_img_idx]['pose']
            goal_img, goal_depth = get_obs(goal_pose)

            list_result_poses = [current_pose]
            num_matches = 0
            flag_broken = False
            while count_steps < num_steps:
                current_img, current_depth = get_obs(current_pose)
                try:
                    kp1, kp2 = sample_gt_correspondences_relativelyDense(
                        current_depth, goal_depth, current_pose, goal_pose)
                    if count_steps == 0:
                        start_depth = current_depth.copy()
                except:
                    print('run into error')
                    break
                num_matches = kp1.shape[1]
                print('num_matches = {}'.format(num_matches))

                vx, vz, omegay, flag_stop = compute_velocity_through_correspondences_and_depth(
                    kp1, kp2, current_depth)

                previous_pose = current_pose
                current_pose, _, _, flag_stop_goToPose = goToPose_one_step(
                    current_pose, vx, vz, omegay)

                ## check if there is collision during the action
                left_pixel = path_finder.point_to_pixel(
                    (previous_pose[0], previous_pose[1]))
                right_pixel = path_finder.point_to_pixel(
                    (current_pose[0], current_pose[1]))
                # rrt.line_check returns True when there is no obstacle
                if not rrt.line_check(left_pixel, right_pixel, free):
                    flag_broken = True
                    #print('run into an obstacle ...')
                    break

                ## check if we should stop or not
                if flag_stop or flag_stop_goToPose:
                    #print('flag_stop = {}, flag_stop_goToPose = {}'.format(flag_stop, flag_stop_goToPose))
                    #print('break')
                    break

                count_steps += 1
                list_result_poses.append(current_pose)
                ## sample current_img again to save in list_obs
                current_img, current_depth = get_obs(current_pose)
            #assert 1==2
            ## decide if this run is successful or not
            flag_correct, dist, theta_change = similar_location_under_certainThreshold(
                goal_pose, list_result_poses[count_steps])
            #print('dist = {}, theta = {}'.format(dist, theta_change))
            #print('start_pose = {}, final_pose = {}, goal_pose = {}'.format(start_pose, list_result_poses[-1], goal_pose))
            if flag_correct:
                count_correct += 1
                list_correct_img_names.append(right_img_name[10:])

            if flag_correct:
                str_succ = 'Success'
                print('str_succ = {}'.format(str_succ))
            else:
                str_succ = 'Failure'
                print('str_succ = {}'.format(str_succ))

            ## ===================================================================================================================
            ## plot the pose graph
            '''
			img_name = 'goTo_{}.jpg'.format(right_img_name[10:])
			print('img_name = {}'.format(img_name))

			## plot the poses
			free2 = cv2.imread('/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'.format(scene_name), 1)
			rows, cols, _ = free2.shape
			plt.imshow(free2)

			for m in range(len(list_result_poses)):
				pose = list_result_poses[m]
				x, y = path_finder.point_to_pixel((pose[0], pose[1]))
				theta = pose[2]
				plt.arrow(x, y, cos(theta), sin(theta), color='y', \
					overhang=1, head_width=0.1, head_length=0.15, width=0.001)
			## draw goal pose
			x, y = path_finder.point_to_pixel((goal_pose[0], goal_pose[1]))
			theta = goal_pose[2]
			plt.arrow(x, y, cos(theta), sin(theta), color='r', \
					overhang=1, head_width=0.1, head_length=0.15, width=0.001)

			plt.axis([0, cols, 0, rows])
			plt.xticks([])
			plt.yticks([])
			plt.title('{}, start point_{}, goal viewpoint {}, {}\n dist = {:.4f} meter, theta = {:.4f} degree\n'.format(scene_name, point_idx, right_img_name[10:], str_succ, dist, theta_change))
			plt.savefig('{}/{}'.format(point_folder, img_name), bbox_inches='tight', dpi=(400))
			plt.close()

			## ======================================================================================================================
			## save stats
			current_test_dict = {}
			current_test_dict['img_name'] = right_img_name
			current_test_dict['success_flag'] = flag_correct
			current_test_dict['dist'] = dist
			current_test_dict['theta'] = theta_change
			current_test_dict['steps'] = count_steps
			current_test_dict['collision'] = flag_broken

			list_whole_stat.append(current_test_dict)
			'''
        '''
		np.save('{}/runs_statistics.npy'.format(point_folder), list_whole_stat)

		success_rate = 1.0 * count_correct / (len(point_pose_npy_file)-1)
		print('count_correct/num_right_images = {}/{} = {}'.format(count_correct, len(point_pose_npy_file)-1, success_rate))

		## write correctly run target image names to file
		f = open('{}/successful_runs.txt'.format(point_folder), 'w')
		f.write('count_correct/num_right_images = {}/{} = {}\n'.format(count_correct, len(point_pose_npy_file)-1, success_rate))
		for i in range(len(list_correct_img_names)):
			f.write('{}\n'.format(list_correct_img_names[i]))
		f.close()
		print('writing correct run image names to txt ...')
		'''

        f.write('point {} : {}/{}\n'.format(point_idx, count_correct,
                                            len(point_pose_npy_file) - 1))
        f.flush()
        list_count_correct.append(count_correct)
        list_count_runs.append(len(point_pose_npy_file) - 1)

    f.write('In total : {}/{}\n'.format(sum(list_count_correct),
                                        sum(list_count_runs)))
    f.write(
        '-------------------------------------------------------------------------------------\n'
    )
            previous_pose = current_pose
            if depth_method == 'void':
                current_pose = update_current_pose(current_pose, 0.0, 0.1,
                                                   omegay)
                flag_stop = flag_stop
            else:
                current_pose, _, _, flag_stop_goToPose = goToPose_one_step(
                    current_pose, vx, vz, omegay)

            ## check if there is collision during the action
            left_pixel = path_finder.point_to_pixel(
                (previous_pose[0], previous_pose[1]))
            right_pixel = path_finder.point_to_pixel(
                (current_pose[0], current_pose[1]))
            # rrt.line_check returns True when there is no obstacle
            if not rrt.line_check(left_pixel, right_pixel, free):
                flag_broken = True
                print('run into an obstacle ...')
                break

            ## check if we should stop or not
            if flag_stop or flag_stop_goToPose:
                print('flag_stop = {}, flag_stop_goToPose = {}'.format(
                    flag_stop, flag_stop_goToPose))
                print('break')
                break

            count_steps += 1
            list_result_poses.append(current_pose)
            ## sample current_img again to save in list_obs
            current_img, current_depth = get_obs(current_pose)
right_pose_list = []
for i in range(len(theta_list)):
	for j in range(len(dist_list)):
		#temp_theta = plus_theta_fn(theta0, theta_list[random.randint(0, 6)])
		#temp_dist = dist_list[random.randint(0, 6)]
		location_theta = plus_theta_fn(theta0, theta_list[i])
		location_dist = dist_list[j]
		x1 = x0 + location_dist * math.cos(location_theta)
		y1 = y0 + location_dist * math.sin(location_theta)

		left_pixel = path_finder.point_to_pixel(left_pose)
		right_pixel = path_finder.point_to_pixel((x1, y1))

		# check the line
		flag = rrt.line_check(left_pixel, right_pixel, free)
		if not flag:
			print('j = {}, obstacle'.format(j))
		else:
			diff_theta_idx = random.randint(0, len(diff_theta_list)-1)
			diff_theta = diff_theta_list[diff_theta_idx]
			theta1 = plus_theta_fn(theta0, diff_theta)
			right_pose = [x1, y1, theta1]

			current_pose = right_pose
			pos, orn = func_pose2posAndorn(current_pose, mapper_scene2z[scene_name])
			env.robot.reset_new_pose(pos, orn)
			obs, _, _, _ = env.step(4)
			obs_rgb = obs['rgb_filled']
			cv2.imwrite('{}/right_img_dist_{}_theta_{}.png'.format(file_addr, j, diff_theta_idx), obs_rgb[:,:,::-1])
def main(scene_idx=0, point_a=0):

	#scene_idx = 1

	## necessary constants
	mapper_scene2points = get_mapper_scene2points()
	num_episodes = 200000
	batch_size = 64
	lambda_action = 0.25
	action_table = buildActionMapper(flag_fewer_actions=True)
	seq_len = 50

	Train_Scenes, Test_Scenes = get_train_test_scenes()

	if mode == 'Test':
		scene_name = Test_Scenes[scene_idx]
	elif mode == 'Train':
		scene_name = Train_Scenes[scene_idx]


	num_startPoints = len(mapper_scene2points[scene_name])
	model_weights_save_path = '{}/{}'.format('/home/reza/Datasets/GibsonEnv/my_code/vs_controller/trained_dqn', approach)
	action_space = action_table.shape[0]

	##=============================================================================================================
	## rrt functions
	## first figure out how to sample points from rrt graph
	rrt_directory = '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt'.format(scene_name)
	path_finder = rrt.PathFinder(rrt_directory)
	path_finder.load()
	num_nodes = len(path_finder.nodes_x)
	free = cv2.imread('/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'.format(scene_name), 0)

	##------------------------------------------------------------------------------------------------------------
	## setup environment
	import gym, logging
	from mpi4py import MPI
	from gibson.envs.husky_env import HuskyNavigateEnv
	from baselines import logger
	import skimage.io
	from transforms3d.euler import euler2quat
	config_file = os.path.join('/home/reza/Datasets/GibsonEnv/my_code/CVPR_workshop', 'env_yamls', '{}_navigate.yaml'.format(scene_name))
	env = HuskyNavigateEnv(config=config_file, gpu_count = 1)
	obs = env.reset() ## this line is important otherwise there will be an error like 'AttributeError: 'HuskyNavigateEnv' object has no attribute 'potential''
	mapper_scene2z = get_mapper()

	def get_obs(current_pose):
		pos, orn = func_pose2posAndorn(current_pose, mapper_scene2z[scene_name])
		env.robot.reset_new_pose(pos, orn)
		obs, _, _, _ = env.step(4)
		obs_rgb = obs['rgb_filled']
		obs_depth = obs['depth']
		#obs_normal = obs['normal']
		return obs_rgb, obs_depth#, obs_normal

	def close_to_goal(pose1, pose2, thresh=0.20):
		L2_dist = math.sqrt((pose1[0] - pose2[0])**2 + (pose1[1] - pose2[1])**2)
		thresh_L2_dist = thresh
		theta_change = abs(pose1[2] - pose2[2])/math.pi * 180
		return (L2_dist <= thresh_L2_dist) #and (theta_change <= 30)

	##============================================================================================================
	if mode == 'Test':
		base_folder = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_{}'.format('test')
	elif mode == 'Train':
		base_folder = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_{}'.format('train')

	import torch
	import torch.nn as nn
	import torch.nn.functional as F

	device = torch.device('cuda:0')     ## Default CUDA device
	num_epochs = 200000 ## same as # of trajs sampled
	num_actions = action_table.shape[0]
	if input_type == 'both':
		perception = Perception_overlap(4).to(device)
	elif input_type == 'siamese':
		perception = Perception_siamese(4).to(device)
	elif input_type == 'optical_flow':
		perception = Perception_overlap(2).to(device)
	elif input_type == 'optical_flow_depth':
		perception = Perception_overlap(3).to(device)
	elif input_type == 'optical_flow_depth_normalized':
		perception = Perception_overlap(3).to(device)
	elif input_type == 'optical_flow_depth_unnormalized_mask':
		perception = Perception_overlap(3).to(device)
	elif input_type == 'optical_flow_depth_siamese':
		perception = Perception_siamese_fusion_new(3).to(device)
	elif input_type == 'optical_flow_memory':
		perception = Preception_overlap_resnet(4).to(device)
	else:
		perception = Perception_overlap(2).to(device)
	if input_type == 'siamese':
		model = DQN_OVERLAP_Controller(perception, num_actions, input_size=512).to(device)
	elif input_type == 'optical_flow_memory':
		model = DQN_OVERLAP_RESNET_Controller(perception, num_actions, input_size=512).to(device)
	else:
		model = DQN_OVERLAP_Controller(perception, num_actions, input_size=256).to(device)
	model.load_state_dict(torch.load('{}/dqn_epoch_{}_Uvalda.pt'.format(model_weights_save_path, num_epochs)))
	#model.eval()

	list_succ = []
	list_collision = []
	## go through each point folder
	if mode == 'Test':
		a, b = 0, 1
	elif mode == 'Train':
		a, b = 7, 8
		#a, b = 0, 1
	#for point_idx in range(0, num_startPoints):
	#for point_idx in range(a, b):
	for point_idx in range(point_a, point_a+1):
		print('point_idx = {}'.format(point_idx))

		task_folder = '{}/{}/point_{}'.format('/home/reza/Datasets/GibsonEnv/my_code/vs_controller/for_video', scene_name, point_idx)
		create_folder(task_folder)

		## read in start img and start pose
		point_image_folder = '{}/{}/point_{}'.format(base_folder, scene_name, point_idx)
		point_pose_npy_file = np.load('{}/{}/point_{}_poses.npy'.format(base_folder, scene_name, point_idx))

		#start_img = cv2.imread('{}/{}.png'.format(point_image_folder, point_pose_npy_file[0]['img_name']))[:, :, ::-1]
		start_pose = point_pose_npy_file[0]['pose']
		start_img, start_depth = get_obs(start_pose)
		start_depth = start_depth.copy()

		count_succ = 0
		count_collision = 0
		count_short_runs = 0
		count_short_runs_collision = 0
		count_short_runs_succ = 0
		## index 0 is the left image, so right_img_idx starts from index 1
		#for right_img_idx in range(1, len(point_pose_npy_file)):
		for right_img_idx in range(1, 101):
			print('right_img_idx = {}'.format(right_img_idx))

			run_folder = '{}/run_{}'.format(task_folder, right_img_idx)
			create_folder(run_folder)

			current_pose = start_pose
			
			right_img_name = point_pose_npy_file[right_img_idx]['img_name']
			
			goal_pose = point_pose_npy_file[right_img_idx]['pose']
			#goal_img = cv2.imread('{}/{}.png'.format(point_image_folder, right_img_name), 1)[:,:,::-1]
			goal_img, goal_depth = get_obs(goal_pose)
			goal_depth = goal_depth.copy()

			current_depth = start_depth.copy()

			episode_reward = 0

			flag_succ = False

			poses_list = []
			poses_list.append(start_pose)
			poses_list.append(goal_pose)
			poses_list.append([current_pose])

			for i_step in range(seq_len):
				if input_type == 'both' or input_type == 'siamese':
					overlapArea_currentView = genOverlapAreaOnCurrentView(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2]
					overlapArea_goalView = genOverlapAreaOnGoalView(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2]
					overlapArea = np.concatenate((overlapArea_currentView, overlapArea_goalView), axis=2)
				elif input_type == 'optical_flow':
					overlapArea = genGtDenseCorrespondenseFlowMap(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2]
					overlapArea = removeCorrespondenceRandomly(overlapArea, keep_prob=1.0)
				elif input_type == 'optical_flow_depth':
					opticalFlow = genGtDenseCorrespondenseFlowMap(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2]
					overlapArea = np.concatenate((opticalFlow, current_depth), axis=2)
				elif input_type == 'optical_flow_depth_normalized':
					opticalFlow = genGtDenseCorrespondenseFlowMap(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2]
					normalized_opticalFlow = normalize_opticalFlow(opticalFlow)
					normalized_depth = normalize_depth(current_depth)
					#normalized_depth = np.ones((256, 256, 1), np.float32)
					overlapArea = np.concatenate((normalized_opticalFlow, normalized_depth), axis=2)
				elif input_type == 'optical_flow_depth_unnormalized_mask':
					opticalFlow, mask_flow = genGtDenseCorrespondenseFlowMapAndMask(current_depth, goal_depth, current_pose, goal_pose)
					opticalFlow = opticalFlow[:, :, :2]
					normalized_depth = current_depth * mask_flow
					#normalized_opticalFlow = normalize_opticalFlow(opticalFlow)
					normalized_depth = normalize_depth(normalized_depth)
					overlapArea = np.concatenate((opticalFlow, normalized_depth), axis=2)	
				elif input_type == 'optical_flow_depth_siamese':
					opticalFlow = genGtDenseCorrespondenseFlowMap(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2]
					normalized_depth = normalize_depth(current_depth)
					#normalized_depth = np.ones((256, 256, 1), np.float32)
					overlapArea = np.concatenate((opticalFlow, normalized_depth), axis=2)
					#print('overlapArea.shape = {}'.format(overlapArea.shape))
				elif input_type == 'optical_flow_memory':
					opticalFlow = genGtDenseCorrespondenseFlowMap(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2]
					if i_step == 0:
						overlapArea = np.concatenate((opticalFlow, opticalFlow), axis=2)
					else:
						overlapArea = np.concatenate((old_opticalFlow, opticalFlow), axis=2)
				else:
					overlapArea = genOverlapAreaOnCurrentView(current_depth, goal_depth, current_pose, goal_pose)[:,:,:2]

				
				tensor_left = torch.tensor(overlapArea, dtype=torch.float32).to(device).unsqueeze(0).permute(0, 3, 1, 2)
				Qvalue_table = model(tensor_left)
				pred = Qvalue_table.max(1)[1].view(1, 1).detach().cpu().numpy().item() ## batch_size x 3
				#print('Qvalue_table: {}'.format(Qvalue_table))
				#print('pred = {}'.format(pred))
				
				## update current_pose
				vz, omegay = action_table[pred]
				#print('vz = {:.2f}, omegay = {:.2f}'.format(vz, omegay))
				vx = 0.0
				vx = vx * lambda_action
				vz = vz * lambda_action
				omegay = omegay * pi * lambda_action
				#print('actual velocity = {:.2f}, {:.2f}, {:.2f}'.format(vx, vz, omegay))
				previous_pose = current_pose
				current_pose = update_current_pose(current_pose, vx, vz, omegay)
				poses_list[2].append(current_pose)

				flag_broken = False
				left_pixel = path_finder.point_to_pixel((previous_pose[0], previous_pose[1]))
				right_pixel = path_finder.point_to_pixel((current_pose[0], current_pose[1]))
				## rrt.line_check returns True when there is no obstacle
				if not rrt.line_check(left_pixel, right_pixel, free):
					print('run into something')
					flag_broken = True
					break

				if close_to_goal(current_pose, goal_pose):
					print('success run')
					flag_succ = True
					break

				## compute new_state
				current_img, current_depth = get_obs(current_pose)
				current_depth = current_depth.copy()
				#old_opticalFlow = opticalFlow.copy()

			np.save('{}/{}_waypoint_pose_list.npy'.format(run_folder, right_img_name[10:]), poses_list)
			#assert 1==2

			if flag_succ:
				count_succ += 1
				list_succ.append(point_pose_npy_file[right_img_idx]['img_name'])
				if findShortRangeImageName(right_img_name):
					count_short_runs_succ += 1
			if flag_broken:
				count_collision += 1
				list_collision.append(point_pose_npy_file[right_img_idx]['img_name'])
				if findShortRangeImageName(right_img_name):
					count_short_runs_collision += 1
			if findShortRangeImageName(right_img_name):
				count_short_runs += 1


			print('count_succ = {}'.format(count_succ))
			print('count_collision = {}'.format(count_collision))
			print('count_short_runs_succ = {}'.format(count_short_runs_succ))
			print('count_short_runs_collision = {}'.format(count_short_runs_collision))

		print('num_succ = {}, num_run = {}, count_short_runs_succ = {}, count_short_runs = {}'.format(count_succ, len(point_pose_npy_file), count_short_runs_succ, count_short_runs))
Exemple #5
0
    def refine_path_worker(self, ):
        path_nodes = self.solution.path
        node_map = [node for node in self.solution.path]

        num_nodes = len(path_nodes)
        nodes_x = np.array([self.pf.nodes_x[node] for node in path_nodes])
        nodes_y = np.array([self.pf.nodes_y[node] for node in path_nodes])
        points = [
            self.pf.pc.point_to_pixel((nodes_x[i], nodes_y[i]))
            for i in range(num_nodes)
        ]
        last_cost = self.solution.cost

        edges = defaultdict(dict)
        for idx, node in enumerate(path_nodes):
            if idx:
                node0, node1 = idx - 1, idx
                distance = math.sqrt((nodes_x[node0] - nodes_x[node1])**2 +
                                     (nodes_y[node0] - nodes_y[node1])**2)
                edges[node0][node1] = distance
                edges[node1][node0] = distance

        solution = None
        last_solution = None
        max_edge_tries = num_nodes
        max_iters = 1000
        tolerance = 0.0000001
        max_zero_diffs = 100
        n_zero_diffs = 0

        iters = 0
        mesg = ""
        #        pdb.set_trace()
        while True:
            iters += 1
            node0 = None
            node1 = None
            found = False
            for i in range(max_edge_tries):
                # if not last_solution:
                #     nodes = list(range(num_nodes))
                # else:
                #     nodes = last_solution.path
                nodes = list(range(num_nodes))
                node0 = nodes[int(random.random() * len(nodes))]
                node1 = nodes[int(random.random() * len(nodes))]

                if (node0 != node1 and node0 not in edges[node1]
                        and rrt.line_check(
                            points[node0], points[node1], self.pf.free,
                            skip=5)):
                    found = True
                    break
            if found:
                distance = math.sqrt((nodes_x[node0] - nodes_x[node1])**2 +
                                     (nodes_y[node0] - nodes_y[node1])**2)
                edges[node0][node1] = distance
                edges[node1][node0] = distance

                # self.pf.edges[node_map[node0]][node_map[node1]] = distance
                # self.pf.edges[node_map[node1]][node_map[node0]] = distance
                # n_edges = self.pf.edges_idx.shape[0]
                # edges_idx = np.zeros((n_edges + 1, 2), dtype=np.int64)
                # edges_idx[:n_edges,:] = self.pf.edges_idx
                # edges_idx[n_edges] = (node_map[node0], node_map[node1])
                # self.pf.edges_idx = edges_idx
                # self.send_redraw()

                pf = rrt.PathFinder(free=self.pf.free,
                                    pc=self.pf.pc,
                                    nodes_x=nodes_x,
                                    nodes_y=nodes_y,
                                    edges=edges)
                solution, _ = pf.find(self.path_start_point[0],
                                      self.path_start_point[1],
                                      self.path_end_point[0],
                                      self.path_end_point[1])
                if not solution:
                    mesg = "Didn't get back a path solution"
                    solution = last_soluton or None
                    break
                cost = solution.cost
                delta = last_cost - cost
                if delta < 0:
                    last_cost = cost
                    last_solution = solution
                    continue
                if delta < tolerance:
                    mesg = "Got a diff {} < which is less than {}".format(
                        delta, tolerance)
                    n_zero_diffs += 1
                    if n_zero_diffs == max_zero_diffs:
                        break
                    else:
                        continue
                n_zero_diffs = 0
                last_cost = cost
                last_solution = solution
                if iters > max_iters:
                    mesg = "Ran out of iterations {}".format(max_iters)
                    break
            else:
                mesg = "Couldn't find a new edge after {} tries.".format(
                    max_edge_tries)
                break

        self.send_status_message(mesg)

        if solution:
            # Add new edges in path to RRT
            edges_to_add = []
            for i, node1 in enumerate(solution.path):
                if i:
                    node0 = solution.path[i - 1]
                    if node_map[node1] not in self.pf.edges[node_map[node0]]:
                        edges_to_add.append((node0, node1))
            for node0, node1 in edges_to_add:
                self.pf.edges[node_map[node0]][
                    node_map[node1]] = edges[node0][node1]
                self.pf.edges[node_map[node1]][
                    node_map[node0]] = edges[node1][node0]
            self.pf.edges_idx = np.vstack((self.pf.edges_idx,
                                           np.array([(node_map[i], node_map[j])
                                                     for i, j in edges_to_add],
                                                    dtype=np.int64)))

            # Copy to path to main path
            for i, node in enumerate(solution.path):
                solution.path[i] = node_map[node]
            self.solution = solution
            self.send_redraw()
Exemple #6
0
def main(scene_idx):
    scene_name = Test_Scenes[scene_idx]
    scene_file_addr = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_test/{}'.format(
        scene_name)

    #scene_name = Train_Scenes[scene_idx]
    #scene_file_addr = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_train/{}'.format(scene_name)
    create_folder(scene_file_addr)

    ## rrt functions
    ## first figure out how to sample points from rrt graph
    rrt_directory = '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt'.format(
        scene_name)
    path_finder = rrt.PathFinder(rrt_directory)
    path_finder.load()
    num_nodes = len(path_finder.nodes_x)
    free = cv2.imread(
        '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'
        .format(scene_name), 0)

    ## GibsonEnv setup
    config_file = os.path.join(
        '/home/reza/Datasets/GibsonEnv/my_code/CVPR_workshop', 'env_yamls',
        '{}_navigate.yaml'.format(scene_name))
    env = HuskyNavigateEnv(config=config_file, gpu_count=1)
    obs = env.reset(
    )  ## this line is important otherwise there will be an error like 'AttributeError: 'HuskyNavigateEnv' object has no attribute 'potential''

    def get_obs(current_pose):
        pos, orn = func_pose2posAndorn(current_pose,
                                       mapper_scene2z[scene_name])
        env.robot.reset_new_pose(pos, orn)
        obs, _, _, _ = env.step(4)
        obs_rgb = obs['rgb_filled']
        obs_depth = obs['depth']
        return obs_rgb.copy(), obs_depth.copy()

    left_pose_list = mapper_scene2points[scene_name]
    right_pose_list = []
    for p_idx, p in enumerate(left_pose_list):
        #for p_idx in range(0, 1):
        #p = left_pose_list[p_idx]
        list_whole = []
        x0, y0, theta0 = p
        left_pose = [x0, y0, theta0]

        point_file_addr = '{}/point_{}'.format(scene_file_addr, p_idx)
        create_folder(point_file_addr)
        current_pose = left_pose
        left_rgb, left_depth = get_obs(current_pose)
        cv2.imwrite('{}/left_img.png'.format(point_file_addr),
                    left_rgb[:, :, ::-1])
        np.save('{}/left_img_depth.npy'.format(point_file_addr), left_depth)
        ## add left_img to list_whole
        current_dict = {}
        current_dict['img_name'] = 'left_img'
        current_dict['pose'] = left_pose
        list_whole.append(current_dict)

        for i in range(len(theta_list)):
            if i == 0 or i == 6:
                len_dist_list = 2
            elif i == 1 or i == 5:
                len_dist_list = 3
            elif i == 2 or i == 4:
                len_dist_list = 4
            elif i == 3:
                len_dist_list = 6
            print('len_dist_list = {}'.format(len_dist_list))
            for j in range(len_dist_list):

                location_theta = plus_theta_fn(theta0, theta_list[i])
                location_dist = dist_list[j]
                x1 = x0 + location_dist * math.cos(location_theta)
                y1 = y0 + location_dist * math.sin(location_theta)

                left_pixel = path_finder.point_to_pixel(left_pose)
                right_pixel = path_finder.point_to_pixel((x1, y1))

                # check the line
                flag = rrt.line_check(left_pixel, right_pixel, free)
                if not flag:
                    print('j = {}, obstacle'.format(j))
                else:
                    for diff_theta_idx in range(len(diff_theta_list)):
                        diff_theta = diff_theta_list[diff_theta_idx]
                        theta1 = plus_theta_fn(theta0, diff_theta)
                        right_pose = [x1, y1, theta1]

                        current_pose = right_pose
                        right_rgb, right_depth = get_obs(current_pose)

                        ## check if there is common space between left img and right img
                        kp1, kp2 = sample_gt_dense_correspondences(
                            left_depth,
                            right_depth,
                            left_pose,
                            right_pose,
                            gap=32,
                            focal_length=128,
                            resolution=256,
                            start_pixel=31)
                        if kp1.shape[1] > 2:
                            cv2.imwrite(
                                '{}/right_img_dist_{}_theta_{}_heading_{}.png'.
                                format(point_file_addr, mapper_dist[j],
                                       mapper_theta[i],
                                       mapper_theta[diff_theta_idx]),
                                right_rgb[:, :, ::-1])
                            np.save(
                                '{}/right_img_dist_{}_theta_{}_heading_{}_depth.npy'
                                .format(point_file_addr, mapper_dist[j],
                                        mapper_theta[i],
                                        mapper_theta[diff_theta_idx]),
                                right_depth)
                            right_pose_list.append(right_pose)
                            ## add right_img to list_whole
                            current_dict = {}
                            current_dict[
                                'img_name'] = 'right_img_dist_{}_theta_{}_heading_{}'.format(
                                    mapper_dist[j], mapper_theta[i],
                                    mapper_theta[diff_theta_idx])
                            current_dict['pose'] = right_pose
                            list_whole.append(current_dict)
                        else:
                            print('No common space')

        ## save list_whole
        np.save('{}/point_{}_poses.npy'.format(scene_file_addr, p_idx),
                list_whole)

    # plot the pose graph
    pose_file_addr = '{}'.format(scene_file_addr)
    img_name = '{}_sampled_poses.jpg'.format(scene_name)
    print('img_name = {}'.format(img_name))
    ## plot the poses
    free = cv2.imread(
        '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'
        .format(scene_name), 1)
    rows, cols, _ = free.shape
    plt.imshow(free)
    for m in range(len(left_pose_list)):
        pose = left_pose_list[m]
        x, y = path_finder.point_to_pixel((pose[0], pose[1]))
        theta = pose[2]
        plt.arrow(x, y, cos(theta), sin(theta), color='r', \
            overhang=1, head_width=0.1, head_length=0.15, width=0.001)
    for m in range(len(right_pose_list)):
        pose = right_pose_list[m]
        x, y = path_finder.point_to_pixel((pose[0], pose[1]))
        theta = pose[2]
        plt.arrow(x, y, cos(theta), sin(theta), color='b', \
            overhang=1, head_width=0.1, head_length=0.15, width=0.001)
    plt.axis([0, cols, 0, rows])
    plt.xticks([])
    plt.yticks([])
    plt.savefig('{}/{}'.format(pose_file_addr, img_name),
                bbox_inches='tight',
                dpi=(400))
    plt.close()