def run(self): self.V.append(tuple(self.env.start)) self.ind = 0 self.fig = plt.figure(figsize=(10, 8)) xnew = self.env.start while self.ind < self.maxiter and getDist( xnew, self.env.goal) > self.stepsize: xrand = sampleFree(self) xnearest = nearest(self, xrand) xnew = steer(self, xnearest, xrand) collide, _ = isCollide(self, xnearest, xnew) if not collide: self.V.append(xnew) # add point self.wireup(xnew, xnearest) if getDist(xnew, self.env.goal) <= self.stepsize: goal = tuple(self.env.goal) self.wireup(goal, xnew) self.Path, D = path(self) print('Total distance = ' + str(D)) # visualization(self) self.i += 1 self.ind += 1 # if the goal is really reached self.done = True visualization(self) plt.show()
def run(self): xnew = self.x0 print('start rrt*... ') self.fig = plt.figure(figsize=(10, 8)) while self.ind < self.maxiter: xrand = sampleFree(self) xnearest = nearest(self, xrand) xnew, dist = steer(self, xnearest, xrand) collide, _ = isCollide(self, xnearest, xnew, dist=dist) if not collide: Xnear = near(self, xnew) self.V.append(xnew) # add point # visualization(self) # minimal path and minimal cost xmin, cmin = xnearest, cost(self, xnearest) + getDist( xnearest, xnew) # connecting along minimal cost path Collide = [] for xnear in Xnear: xnear = tuple(xnear) c1 = cost(self, xnear) + getDist(xnew, xnear) collide, _ = isCollide(self, xnew, xnear) Collide.append(collide) if not collide and c1 < cmin: xmin, cmin = xnear, c1 self.wireup(xnew, xmin) # rewire for i in range(len(Xnear)): collide = Collide[i] xnear = tuple(Xnear[i]) c2 = cost(self, xnew) + getDist(xnew, xnear) if not collide and c2 < cost(self, xnear): # self.removewire(xnear) self.wireup(xnear, xnew) self.i += 1 self.ind += 1 # max sample reached self.reached() print('time used = ' + str(time.time() - starttime)) print('Total distance = ' + str(self.D)) visualization(self) plt.show()
def run(self): self.V.append(self.env.start) self.ind = 0 self.fig = plt.figure(figsize=(10, 8)) xnew = self.env.start while self.ind < self.maxiter and getDist(xnew, self.env.goal) > 1: xrand = sampleFree(self) xnearest = nearest(self, xrand) xnew = steer(self, xnearest, xrand) if not isCollide(self, xnearest, xnew): self.V.append(xnew) # add point self.wireup(xnew, xnearest) visualization(self) self.i += 1 self.ind += 1 if getDist(xnew, self.env.goal) <= 1: self.wireup(self.env.goal, xnew) self.Path, D = path(self) print('Total distance = ' + str(D)) self.done = True visualization(self) plt.show()
def Main(self): qgoal = tuple(self.env.start) qstart = tuple(self.env.goal) self.GrowRRT() self.done = True # visualization(self) self.done = False # change the enviroment new0,old0 = self.env.move_block(a=[0, 0, -2], s=0.5, block_to_move=1, mode='translation') while qgoal != qstart: qgoal = self.Parent[qgoal] # TODO move to qgoal and check for new obs xrobot = qstart # TODO if any new obstacle are observed self.InvalidateNodes(new0, mode = 'translation') for xi in self.Path: if self.Flag[tuple(xi[0])] == 'Invalid': self.RegrowRRT(tuple(self.env.start)) self.done = True self.Path, D = path(self) visualization(self) plt.show()
def run(self): self.V.append(self.env.start) self.ind = 0 xnew = self.env.start print('start rrt*... ') self.fig = plt.figure(figsize=(10, 8)) while self.ind < self.maxiter: xrand = sampleFree(self) xnearest = nearest(self, xrand) xnew = steer(self, xnearest, xrand) if not isCollide(self, xnearest, xnew): Xnear = near(self, xnew) self.V.append(xnew) # add point visualization(self) # minimal path and minimal cost xmin, cmin = xnearest, cost(self, xnearest) + getDist( xnearest, xnew) # connecting along minimal cost path for xnear in Xnear: c1 = cost(self, xnear) + getDist(xnew, xnear) if not isCollide(self, xnew, xnear) and c1 < cmin: xmin, cmin = xnear, c1 self.wireup(xnew, xmin) # rewire for xnear in Xnear: c2 = cost(self, xnew) + getDist(xnew, xnear) if not isCollide(self, xnew, xnear) and c2 < cost(self, xnear): self.removewire(xnear) self.wireup(xnear, xnew) self.i += 1 self.ind += 1 # max sample reached self.reached() print('time used = ' + str(time.time() - starttime)) print('Total distance = ' + str(self.D)) visualization(self) plt.show()
def RRTplan(self, env, initial, goal): threshold = self.stepsize nearest = initial # state structure self.V.append(initial) rrt_tree = initial # TODO KDtree structure while self.ind <= self.maxiter: target = self.ChooseTarget(goal) nearest = self.Nearest(rrt_tree, target) extended, collide = self.Extend(env, nearest, target) if not collide: self.AddNode(rrt_tree, nearest, extended) if getDist(nearest, goal) <= threshold: self.AddNode(rrt_tree, nearest, self.xt) break self.i += 1 self.ind += 1 visualization(self) # return rrt_tree self.done = True self.Path, D = path(self) visualization(self) plt.show()
def run(self): self.V.append(self.x0) while self.ind < self.maxiter: xrand = sampleFree(self) xnearest = nearest(self, xrand) xnew, dist = steer(self, xnearest, xrand) collide, _ = isCollide(self, xnearest, xnew, dist=dist) if not collide: self.V.append(xnew) # add point self.wireup(xnew, xnearest) if getDist(xnew, self.xt) <= self.stepsize: self.wireup(self.xt, xnew) self.Path, D = path(self) print('Total distance = ' + str(D)) break # visualization(self) self.i += 1 self.ind += 1 # if the goal is really reached self.done = True visualization(self) plt.show()