def ex(ifig=50, exp_ref=['exp_dat/Bsteel/EXP_BULGE_JINKIM.txt', 'exp_dat/Bsteel/uni/avgstr_000.txt'], exp_lab=['Exp bulge','Exp uniaxial'], mod_ref='STR_STR.OUT'): """ Arguments ========= exp_ref = ['exp_dat'/Bsteel/EXP_BULGE_JINKIM.txt'] exp_lab = ['Exp bulge', 'Exp uniaxial') mod_ref = 'STR_STR.OUT' """ fig=plt.figure(ifig);ax=fig.add_subplot(111) myrs = ResidualStress() strains = myrs.straine #(20,6) # strains = myrs.strainm #(4,6) strain_eff = strains.T[0]+strains.T[1] strain_eff = strain_eff.T stress = [] for i in xrange(len(strain_eff)): dum = myrs.analysis(iopt=0,istp=i) stress.append((dum[0] + dum[1])/2.) ax.plot(strain_eff,stress,'-x',label='Model SF/IG/ehkl') stress = [] for i in xrange(len(strain_eff)): dum = myrs.analysis(iopt=1,istp=i) stress.append((dum[0] + dum[1])/2.) ax.plot(strain_eff,stress,'-x',label='Exp SF/IG/ehkl') stress = [] for i in xrange(len(strain_eff)): dum = myrs.analysis(iopt=2,istp=i) stress.append((dum[0] + dum[1])/2.) ax.plot(strain_eff,stress,'-x',label='Model SF/IG + Exp ehkl') for i in xrange(len(exp_ref)): exp_ref = exp_ref[i] x,y=np.loadtxt(exp_ref).T ax.plot(x,y,'--',label=exp_lab[i]) dum=np.loadtxt(mod_ref,skiprows=1).T; x=dum[2]+dum[3];y=(dum[8]+dum[9])/2.; ax.plot(x,y,'--',label='EVPSC biaxial') __deco__(ax,iopt=3) ax.legend(loc='best',fancybox=True).get_frame().set_alpha(0.5) fig.tight_layout() plt.show() return stress
def ex(ifig=50, exp_ref=['exp_dat/Bsteel/EXP_BULGE_JINKIM.txt', 'exp_dat/Bsteel/uni/avgstr_000.txt'], exp_lab=['Exp bulge','Exp uniaxial'], mod_ref='STR_STR.OUT'): """ Arguments ========= exp_ref = ['exp_dat'/Bsteel/EXP_BULGE_JINKIM.txt'] exp_lab = ['Exp bulge', 'Exp uniaxial') mod_ref = 'STR_STR.OUT' """ fig=plt.figure(ifig);ax=fig.add_subplot(111) myrs = ResidualStress() strains = myrs.straine #(20,6) # strains = myrs.strainm #(4,6) strain_eff = strains.T[0]+strains.T[1] strain_eff = strain_eff.T stress = [] for i in range(len(strain_eff)): dum = myrs.analysis(iopt=0,istp=i) stress.append((dum[0] + dum[1])/2.) ax.plot(strain_eff,stress,'-x',label='Model SF/IG/ehkl') stress = [] for i in range(len(strain_eff)): dum = myrs.analysis(iopt=1,istp=i) stress.append((dum[0] + dum[1])/2.) ax.plot(strain_eff,stress,'-x',label='Exp SF/IG/ehkl') stress = [] for i in range(len(strain_eff)): dum = myrs.analysis(iopt=2,istp=i) stress.append((dum[0] + dum[1])/2.) ax.plot(strain_eff,stress,'-x',label='Model SF/IG + Exp ehkl') for i in range(len(exp_ref)): exp_ref = exp_ref[i] x,y=np.loadtxt(exp_ref).T ax.plot(x,y,'--',label=exp_lab[i]) dum=np.loadtxt(mod_ref,skiprows=1).T; x=dum[2]+dum[3];y=(dum[8]+dum[9])/2.; ax.plot(x,y,'--',label='EVPSC biaxial') __deco__(ax,iopt=3) ax.legend(loc='best',fancybox=True).get_frame().set_alpha(0.5) fig.tight_layout() plt.show() return stress
def ex_consistency( ifig=50,nxphi=3,exp_ref=[],exp_lab=[],mod_ext=None, mod_ref='STR_STR.OUT',sin2psimx=None,iscatter=False, sigma=5e-5,psimx=None,psi_nbin=1,ig_sub=True,istep=None, hkl=None,iplot=True,iwind=False,wdeg=2,ipsi_opt=1, fn_sff=None,pmargin=None,path='',sf_ext=None,ig_ext=None, vf_ext=None,iwgt=False,verbose=False,ilog=False, dec_inv_frq=1,dec_interp=1,theta_b=None,ird=1.): """ Consistency check between 'weighted average' stress and the stress obtained following the stress analysis method (SF, IG strain) ---------------------------------------- ## Data visualization options ifig = 50 nxphi : display only first nxphi of results along phi axis hkl : hkl of plane, for the sake of labels. path : place holder for strain path ---------------------------------------- ## Data process parameters #1. Main options sf_ext : Overwrite stress factor ig_ext : Overwrite IG strain vf_ext : Overwrite grain volume fraction (nstp,nphi,npsi) iscatter (False) : introducing a random scattering of 'ehkl' #2. tilting angle restriction/treatments sin2psimx : limiting the maximum sin2psi values, with which stress-fitting is carried out psimx : limiting the maximum psi value psi_nbin : If other than 1, limit the number of data #3. IG strain-specific ig_sub : flag whether or not subtract the IG strain #4. DEC related dec_inv_frq : Inverse Frequency of DEC measures along EVM (nstp) dec_interp: Interpolation method for the incomplete DEC #5. Misc. exp_ref : experimental reference mod_ref : model's weighted average flow curves are given ---------------------------------------- ## misc. options iplot (True) : flag whether or not MPL plot is performed ipsi_opt 0: sin2psi 1: sign(psi) * sin2psi 2: psi istep : If other than None, analysis is carried out only for the given istep ---------------------------------------- ## debugging options verbose : False ilog : False ---------------------------------------- ## Diffraction condition parameters theta_b : None (Bragg's angle) ird : Intensity expected for random distribution """ if ilog: fn = 'ex_consistency.log' f = open(fn,'w') write_args( f=f,ihead=True,ifig=ifig,nxphi=nxphi,exp_ref=exp_ref, exp_lab=exp_lab,mod_ext=mod_ext,mod_ref=mod_ref, sin2psimx=sin2psimx,iscatter=iscatter,sigma=sigma, psimx=psimx,psi_nbin=psi_nbin,ig_sub=ig_sub, istep=istep,hkl=hkl,iplot=iplot,iwind=iwind, wdeg=wdeg,ipsi_opt=ipsi_opt,fn_sff=fn_sff, pmargin=pmargin,path=path,sf_ext=sf_ext, ig_ext=ig_ext,vf_ext=vf_ext,iwgt=iwgt, verbose=verbose,ilog=ilog) f.close() print 'log has been saved to ',fn from rs import ResidualStress,u_epshkl,\ u_epshkl_geom_inten,filter_psi,filter_psi3,\ psi_reso,psi_reso2,psi_reso3,psi_reso4 from mst_ex import use_intp_sfig, return_vf from MP.mat import mech # mech is a module FlowCurve = mech.FlowCurve if iplot: from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from MP.lib import mpl_lib,axes_label plt.ioff() wide_fig = mpl_lib.wide_fig fancy_legend = mpl_lib.fancy_legend ## Collection of figures at various plastic strains fe = PdfPages('all_ehkl_fits_%s_%s.pdf'%(hkl,path)) fs = PdfPages('all_stress_factors_%s_%s.pdf'%(hkl,path)) f_er = PdfPages('all_Ei-ehkl-e0_%s_%s.pdf'%(hkl,path)) fig1 = wide_fig(ifig,nw=2,nh=1,left=0.2,uw=3.5, w0=0,w1=0.3,right=0,iarange=True) ## ax1: Equivalent Stress/Strain ## ax2: Stress path in the plane stress space (RD/TD) ax1 = fig1.axes[0]; ax2 = fig1.axes[1] pass #------------------------------------------------------------# ## i_ip = 1: ioption for the model data model_rs = ResidualStress( mod_ext=mod_ext,fnmod_ig='igstrain_fbulk_ph1.out', fnmod_sf='igstrain_fbulk_ph1.out',i_ip=1) ## Process the sf/eps0/ehkl/wgt and so forth ## according to the parameters given ivf_ext=True; isf_ext=True; iig_ext=True if type(sf_ext)==type(None):isf_ext=False if type(ig_ext)==type(None):iig_ext=False if type(vf_ext)==type(None):ivf_ext=False """ ## final data should be saved to 'model_sfs' 'model_igs' 'model_ehkl' And eventually to 'model_tdats' inside the loop """ ## SF/IG/ehkl model_ehkls = np.copy(model_rs.dat_model.ehkl) if isf_ext and iig_ext: model_sfs = sf_ext.copy() model_igs = ig_ext.copy() elif isf_ext!=iig_ext: raise IOError, 'isf_ext should equal to iig_ext' ## if isf_ext False and isf_ext False else: model_sfs = model_rs.dat_model.sf.copy() model_igs = model_rs.dat_model.ig.copy() ## VF if not(ivf_ext): model_vfs, model_ngr = return_vf() else: model_vfs = vf_ext.copy() ## whether or not vf would be used as weights in ## the least-sq estimator if not(iwgt): wgt = None # overwrite wgt # Apply process # 0. Use of interpolated SF? # 1. Limit the range of sin2psi (or psi) # 2. Finite number of tiltings # 3. Assign tdat # 4. Perturb ehkl (common) # 5. Filter based on vf? ## Unstaged but the 'raw' arrays raw_psis = model_rs.dat_model.psi.copy() raw_vfs = model_vfs.copy() raw_ehkl = np.copy(model_rs.dat_model.ehkl) raw_sfs = model_sfs.copy() ## staged arrays for stress estimation model_rs.psis = model_rs.dat_model.psi.copy() model_rs.phis = model_rs.dat_model.phi.copy() model_rs.npsi = len(model_rs.psis) model_rs.nphi = len(model_rs.phis) sin2psis_init = np.sin(model_rs.psis)**2 # 0. Use interpolated SF _sf_, _ig_ = use_intp_sfig( dec_inv_frq,iopt=dec_interp, iplot=False,iwgt=False) ## swapping axes to comply with what is used ## in dat_model.sf _sf_ = _sf_.sf.swapaxes(1,3).swapaxes(2,3) _sf_ = _sf_ *1e6 # 0.5 Mask DEC where volume fraction ## model_ngr or model_vfs for i in range(len(model_vfs)): for j in range(len(model_vfs[i])): for k in range(len(model_vfs[i][j])): if model_ngr[i,j,k]==0: _sf_[i,:,j,k]=np.nan # _ig_[i,j,k]=np.nan raw_sfs[i,:,j,k]=np.nan model_sfs[i,:,j,k]=np.nan raw_ehkl[i,j,k] = np.nan for m in range(6): if _sf_[i,m,j,k]==0 or raw_sfs[i,m,j,k]==0: # print 'encountered zero sf' _sf_[i,m,j,k] = np.nan raw_sfs[i,m,j,k] = np.nan model_sfs[i,m,j,k] = np.nan raw_ehkl[i,j,k] = np.nan # 1. Limit the range of sin2psi (or psi) if type(sin2psimx)!=type(None) or \ type(psimx)!=type(None): if type(sin2psimx)!=type(None): bounds=[0., sin2psimx] elif type(psimx)!=type(None): bounds=[0.,np.sin(psimx*np.pi/180.)**2] raw_sfs,model_sfs,model_igs,model_vfs,\ model_ehkls,raw_psis,_sf_,raw_vfs\ = filter_psi3( sin2psis_init,bounds, raw_sfs,model_sfs,model_igs,model_vfs, model_ehkls,raw_psis,_sf_,raw_vfs) ## reduce the psis in model_rs model_rs.psis, = filter_psi3( sin2psis_init,bounds, model_rs.psis.copy()) model_rs.npsi = len(model_rs.psis) DEC_interp = _sf_.copy() # 2. Finite number of tiltings if psi_nbin!=1: model_sfs, model_igs, model_vfs, \ model_ehkls, _sf_ \ = psi_reso4( model_rs.psis, psi_nbin, model_sfs,model_igs, model_vfs,model_ehkls,_sf_) model_rs.psis, = psi_reso4( model_rs.psis.copy(),psi_nbin, model_rs.psis.copy()) model_rs.npsi = len(model_rs.psis) # 3. Assign tdat if ig_sub: model_tdats = model_ehkls - model_igs else: model_tdats = model_ehkls.copy() # 4. Perturb ehkl (common) if iscatter: nstp, nphi, npsi = model_ehkls.shape tdats = np.zeros((nstp,nphi,npsi)) for istp in range(nstp): for iphi in range(nphi): # ## Previous perturbation rule # tdats[istp,iphi,:] = u_epshkl( # model_tdats[istp,iphi], # sigma=sigma) ## New perturbation rule if type(theta_b).__name__== 'NoneType': raise IOError, 'theta_b should be given' for ipsi in range(npsi): ## multitudes of random mrd = model_vfs[istp,iphi,ipsi]/ird tdats[istp,iphi,ipsi] = u_epshkl_geom_inten( e = model_tdats[istp,iphi,ipsi], sigma = sigma, psi = model_rs.psis[ipsi], ## need to calculate the below... theta_b = theta_b, mrd = mrd) else: tdats=model_tdats.copy() ## end of data process #------------------------------------------------------------# if mod_ext==None: mod_ref='STR_STR.OUT' else: mod_ref='%s.%s'%(mod_ref.split('.')[0], mod_ext) flow_weight = FlowCurve(name='Model weighted') flow_weight.get_model(fn=mod_ref) ## calc Von Mises stress/strain flow_weight.get_eqv() if len(flow_weight.epsilon_vm)<5: lc='k.' else: lc='k-' if iplot: ax1.plot( flow_weight.epsilon_vm, flow_weight.sigma_vm, lc,label=r'$\langle \sigma^c \rangle$', alpha=1.0) axes_label.__eqv__(ax1,ft=10) ## plot all stress factors at individual ## deformation levels stress = [] if verbose or True: print '%8s%8s%8s%8s%8s%8s'%( 'S11','S22','S33','S23','S13','S12') ################################################ ## *Serial* Loop over the deformation steps ref_psis = model_rs.psis.copy() nstp = model_rs.dat_model.nstp # nstp = 3 ## debugging for istp in range(nstp): """ Dimensions of data arrays for: ============================== sf (nstp, k, nphi, npsi) ig (nstp, nphi, npsi) ehkl (nstp, nphi, npsi) strain (nstp, 6) vf (nstp, nphi, npsi) """ if iplot==False and istep!=None: nstp=1 istp = istep print 'processing: %2.2i/%2.2i'%(istp,nstp) #model_rs.sf = model_sfs[istp].copy() ## filter signals where any data is nan ref = _sf_[istp].copy() inds = [] ## masking can be improved by being ## specific on phi axis -> require fix in RS.rs # for iphi in range(len(ref[0])): for ipsi in range(len(ref_psis)): if not(np.isnan(ref[0:2,:,ipsi]).any()): inds.append(ipsi) model_rs.sf = _sf_[istp][:,:,inds] model_rs.psis = ref_psis[inds] model_rs.npsi = len(model_rs.psis) model_rs.eps0 = model_igs[istp][:,inds] model_rs.ehkl = model_ehkls[istp][:,inds] model_rs.tdat = tdats[istp][:,inds] #-----------------------------------# ## find the sigma ... s11 = model_rs.dat_model.\ flow.sigma[0,0][istp] s22 = model_rs.dat_model.\ flow.sigma[1,1][istp] ## find the stress by fitting ## the elastic strains dsa_sigma = model_rs.find_sigma( ivo=[0,1], init_guess=[0,0,0,0,0,0],#[s11,s22,0,0,0,0], weight = wgt) # None if verbose or True: for i in range(6): print '%+7.1f'%(dsa_sigma[i]), print '' stress.append(dsa_sigma) full_Ei = np.zeros((model_rs.nphi,len(raw_psis))) for iphi in range(model_rs.nphi): for ipsi in range(len(raw_psis)): for k in range(2): full_Ei[iphi,ipsi] \ = full_Ei[iphi,ipsi]+\ raw_sfs[istp,k,iphi,ipsi]*dsa_sigma[k] if istep!=None and iplot==False: return model_rs, s11,s22, dsa_sigma[0],dsa_sigma[1],\ raw_psis.copy(),\ raw_vfs[istp].copy(),raw_sfs[istp].copy(),\ full_Ei.copy(),\ DEC_interp[istp].copy() #-----------------------------------# if istp==0: ileg=True else: ileg=True #False if (istep!=None and istp==istep) or\ (istep==None and istp==nstp-1)\ and iplot: fig2,fig3,fig4=__model_fit_plot__( model_rs,ifig=ifig+istp*2+10, istp=istp, nxphi=nxphi,stress_wgt=None, ivo=None,hkl=hkl,ileg=ileg,iwind=iwind, wdeg=wdeg) elif iplot: plt.ioff() f1,f2,f3=__model_fit_plot__( model_rs,ifig=ifig+istp*2+10, ## stress_wgt: the mechanical stress. ## will be used as a reference line istp=istp,nxphi=nxphi,stress_wgt=[s11,s22,0,0,0,0], wgt=raw_vfs[istp].copy(),wgt_psi=raw_psis, full_Ei = full_Ei, full_DEC = raw_sfs[istp].copy(), DEC_interp = DEC_interp[istp].copy(), ivo=[0,1],hkl=hkl,ileg=ileg,iwind=False, ipsi_opt=ipsi_opt) fs.savefig(f2);fe.savefig(f1);f_er.savefig(f3) f1.clf();plt.draw();f2.clf();plt.draw();f3.clf();plt.draw() plt.close(f1);plt.close(f2);plt.close(f3);plt.ion() # end of the serial loop over deformation steps ############################################################ if iplot: fe.close(); fs.close(); f_er.close() stress = np.array(stress).T # diffraction stress flow_dsa = FlowCurve(name='Diffraction Stress') flow_dsa.get_6stress(stress) flow_dsa.get_33strain(model_rs.dat_model.flow.epsilon) flow_dsa.get_eqv() ## Various plots if iplot: ax1.plot(flow_dsa.epsilon_vm,flow_dsa.sigma_vm,'k+', label=r'$\hat{\sigma}^{RS}$') for i in range(len(exp_ref)): f = exp_ref[i]; lab = exp_lab[i] edat = np.loadtxt(f).T ax1.plot(edat[0],edat[1],'-',lw=2,label=lab) ## ax1.set_ylim(0.,800) fancy_legend(ax1,size=10,nscat=2) sigma_wgt = flow_weight.sigma if iplot: ax2.plot(sigma_wgt[0,0],sigma_wgt[1,1],'k-') ax2.plot(flow_dsa.sigma[0,0],flow_dsa.sigma[1,1],'k+') ## connector npoints = len(sigma_wgt[0,0]) wgtx = sigma_wgt[0,0]; wgty = sigma_wgt[1,1] dsax = flow_dsa.sigma[0,0]; dsay = flow_dsa.sigma[1,1] for i in range(npoints): ax2.plot([wgtx[i],dsax[i]],[wgty[i],dsay[i]],'k-',alpha=0.2) ax2.set_ylim(-100,700); ax2.set_xlim(-100,700) ax2.set_aspect('equal') ax2.set_xlabel(r'$\bar{\Sigma}_{11}$',dict(fontsize=15)) ax2.set_ylabel(r'$\bar{\Sigma}_{22}$',dict(fontsize=15)) ax2.locator_params(nbins=3) ax2.set_xticks(np.linspace(300,700,3),dict(fontsize=4)) ax2.set_yticks(np.linspace(300,700,3),dict(fontsize=4)) ax2.grid('on'); plt.show() ## save figures fig1.savefig('flow_%s_%s.pdf'%(hkl,path)) ## fig2.savefig('ehkl_%s_fit_%s.pdf'%(hkl,path)) ## fig3.savefig('sf_%s_%s.pdf'%(hkl,path)) ## fig4.savefig('ehkl_fit_err_%s_%s.pdf'%(hkl,path)) # close figures plt.close(fig1); plt.close(fig2); plt.close(fig3); plt.close(fig4) return model_rs, flow_weight, flow_dsa
def ex_consistency( ifig=50,nxphi=3,exp_ref=[],exp_lab=[],mod_ext=None, mod_ref='STR_STR.OUT',sin2psimx=None,iscatter=False, sigma=5e-5,psimx=None,psi_nbin=1,ig_sub=True,istep=None, hkl=None,iplot=True,iwind=False,wdeg=2,ipsi_opt=1, fn_sff=None,pmargin=None,path='',sf_ext=None,ig_ext=None, vf_ext=None,iwgt=False,verbose=False,ilog=True, dec_inv_frq=1,dec_interp=1,theta_b=None,ird=1.,nfrq=None): """ Consistency check between 'weighted average' stress and the stress obtained following the stress analysis method (SF, IG strain) ---------------------------------------- ## Data visualization options ifig = 50 nxphi : display only first nxphi of results along phi axis hkl : hkl of plane, for the sake of labels. path : place holder for strain path ---------------------------------------- ## Data process parameters #1. Main options sf_ext : Overwrite stress factor ig_ext : Overwrite IG strain vf_ext : Overwrite grain volume fraction (nstp,nphi,npsi) iscatter (False) : introducing a random scattering of 'ehkl' sigma : Level of standard deviation in the Gaussian distribution used to 'perturb' the lattice strain. #2. tilting angle restriction/treatments sin2psimx : limiting the maximum sin2psi values, with which stress-fitting is carried out psimx : limiting the maximum psi value psi_nbin : If other than 1, limit the number of data #3. IG strain-specific ig_sub : flag whether or not subtract the IG strain #4. DEC related dec_inv_frq : Inverse Frequency of DEC measures along EVM (nstp) dec_interp: Interpolation method for the incomplete DEC #5. Misc. exp_ref : experimental reference mod_ref : model's weighted average flow curves are given ---------------------------------------- ## misc. options iplot (True) : flag whether or not MPL plot is performed ipsi_opt 0: sin2psi 1: sign(psi) * sin2psi 2: psi istep : If other than None, analysis is carried out only for the given istep ---------------------------------------- ## debugging options verbose : False ilog : False ---------------------------------------- ## Diffraction condition parameters theta_b : None (Bragg's angle) (given in radian) ird : Intensity expected for random distribution nfrq None """ import time from MP import progress_bar uet = progress_bar.update_elapsed_time t0 = time.time() if ilog: fn = 'ex_consistency.log' f = open(fn,'w') write_args( f=f,ihead=True,ifig=ifig,nxphi=nxphi,exp_ref=exp_ref, exp_lab=exp_lab,mod_ext=mod_ext,mod_ref=mod_ref, sin2psimx=sin2psimx,iscatter=iscatter,sigma=sigma, psimx=psimx,psi_nbin=psi_nbin,ig_sub=ig_sub, istep=istep,hkl=hkl,iplot=iplot,iwind=iwind, wdeg=wdeg,ipsi_opt=ipsi_opt,fn_sff=fn_sff, pmargin=pmargin,path=path,sf_ext=sf_ext, ig_ext=ig_ext,vf_ext=vf_ext,iwgt=iwgt, verbose=verbose,ilog=ilog,nfrq=nfrq, ird=ird,theta_b=theta_b) f.close() print 'log has been saved to ',fn from rs import ResidualStress,u_epshkl,\ u_epshkl_geom_inten,filter_psi,filter_psi3,\ psi_reso,psi_reso2,psi_reso3,psi_reso4 from mst_ex import use_intp_sfig, return_vf from MP.mat import mech # mech is a module FlowCurve = mech.FlowCurve if iplot: from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from MP.lib import mpl_lib,axes_label plt.ioff() wide_fig = mpl_lib.wide_fig fancy_legend = mpl_lib.fancy_legend ## Collection of figures at various plastic strains fe = PdfPages('all_ehkl_fits_%s_%s.pdf'%(hkl,path)) fs = PdfPages('all_stress_factors_%s_%s.pdf'%(hkl,path)) f_er = PdfPages('all_Ei-ehkl-e0_%s_%s.pdf'%(hkl,path)) fig1 = wide_fig(ifig,nw=2,nh=1,left=0.2,uw=3.5, w0=0,w1=0.3,right=0,iarange=True) fig_vm = plt.figure(figsize=(3.5,3.5)) ax_vm = fig_vm.add_subplot(111) ## ax1: Equivalent Stress/Strain ## ax2: Stress path in the plane stress space (RD/TD) ax1 = fig1.axes[0]; ax2 = fig1.axes[1] pass #------------------------------------------------------------# ## i_ip = 1: ioption for the model data model_rs = ResidualStress( mod_ext=mod_ext,fnmod_ig='igstrain_fbulk_ph1.out', fnmod_sf='igstrain_fbulk_ph1.out',i_ip=1) ## Process the sf/eps0/ehkl/wgt and so forth ## according to the parameters given ivf_ext=True; isf_ext=True; iig_ext=True if type(sf_ext)==type(None):isf_ext=False if type(ig_ext)==type(None):iig_ext=False if type(vf_ext)==type(None):ivf_ext=False """ ## final data should be saved to 'model_sfs' 'model_igs' 'model_ehkl' And eventually to 'model_tdats' inside the loop """ ## SF/IG/ehkl model_ehkls = np.copy(model_rs.dat_model.ehkl) if isf_ext and iig_ext: model_sfs = sf_ext.copy() model_igs = ig_ext.copy() elif isf_ext!=iig_ext: raise IOError, 'isf_ext should equal to iig_ext' ## if isf_ext False and isf_ext False else: model_sfs = model_rs.dat_model.sf.copy() model_igs = model_rs.dat_model.ig.copy() ## VF if not(ivf_ext): model_vfs, model_ngr = return_vf() else: model_vfs = vf_ext.copy() ## whether or not vf would be used as weights in ## the least-sq estimator if not(iwgt): wgt = None # overwrite wgt # Apply process # 0. Use of interpolated SF? # 1. Limit the range of sin2psi (or psi) # 2. Finite number of tiltings # 3. Assign tdat # 4. Perturb ehkl (common) # 5. Filter based on vf? ## Unstaged but the 'raw' arrays raw_psis = model_rs.dat_model.psi.copy() raw_vfs = model_vfs.copy() raw_ehkl = np.copy(model_rs.dat_model.ehkl) raw_sfs = model_sfs.copy() ## staged arrays for stress estimation model_rs.psis = model_rs.dat_model.psi.copy() model_rs.phis = model_rs.dat_model.phi.copy() model_rs.npsi = len(model_rs.psis) model_rs.nphi = len(model_rs.phis) sin2psis_init = np.sin(model_rs.psis)**2 # 0. Use interpolated SF _sf_, _ig_ = use_intp_sfig( dec_inv_frq,iopt=dec_interp, iplot=False,iwgt=False) ## swapping axes to comply with what is used ## in dat_model.sf _sf_ = _sf_.sf.swapaxes(1,3).swapaxes(2,3) _sf_ = _sf_ *1e6 # 0.5 Mask DEC where volume fraction ## model_ngr or model_vfs for i in xrange(len(model_vfs)): for j in xrange(len(model_vfs[i])): for k in xrange(len(model_vfs[i][j])): if model_ngr[i,j,k]==0: _sf_[i,:,j,k]=np.nan # _ig_[i,j,k]=np.nan raw_sfs[i,:,j,k]=np.nan model_sfs[i,:,j,k]=np.nan raw_ehkl[i,j,k] = np.nan for m in xrange(6): if _sf_[i,m,j,k]==0 or raw_sfs[i,m,j,k]==0: # print 'encountered zero sf' _sf_[i,m,j,k] = np.nan raw_sfs[i,m,j,k] = np.nan model_sfs[i,m,j,k] = np.nan raw_ehkl[i,j,k] = np.nan # 1. Limit the range of sin2psi (or psi) if type(sin2psimx)!=type(None) or \ type(psimx)!=type(None): if type(sin2psimx)!=type(None): bounds=[0., sin2psimx] elif type(psimx)!=type(None): bounds=[0.,np.sin(psimx*np.pi/180.)**2] raw_sfs,model_sfs,model_igs,model_vfs,\ model_ehkls,raw_psis,_sf_,raw_vfs\ = filter_psi3( sin2psis_init,bounds, raw_sfs,model_sfs,model_igs,model_vfs, model_ehkls,raw_psis,_sf_,raw_vfs) ## reduce the psis in model_rs model_rs.psis, = filter_psi3( sin2psis_init,bounds, model_rs.psis.copy()) model_rs.npsi = len(model_rs.psis) DEC_interp = _sf_.copy() # 2. Finite number of tiltings if psi_nbin!=1: model_sfs, model_igs, model_vfs, \ model_ehkls, _sf_ \ = psi_reso4( model_rs.psis, psi_nbin, model_sfs,model_igs, model_vfs,model_ehkls,_sf_) model_rs.psis, = psi_reso4( model_rs.psis.copy(),psi_nbin, model_rs.psis.copy()) model_rs.npsi = len(model_rs.psis) # 3. Assign tdat if ig_sub: model_tdats = model_ehkls - model_igs else: model_tdats = model_ehkls.copy() # 4. Perturb ehkl (common) if iscatter: nstp, nphi, npsi = model_ehkls.shape tdats = np.zeros((nstp,nphi,npsi)) for istp in xrange(nstp): for iphi in xrange(nphi): # ## Previous perturbation rule # tdats[istp,iphi,:] = u_epshkl( # model_tdats[istp,iphi], # sigma=sigma) ## New perturbation rule if type(theta_b).__name__== 'NoneType': raise IOError, 'theta_b should be given' for ipsi in xrange(npsi): ## multitudes of random mrd = model_vfs[istp,iphi,ipsi]/ird tdats[istp,iphi,ipsi] = u_epshkl_geom_inten( e = model_tdats[istp,iphi,ipsi], sigma = sigma, psi = model_rs.psis[ipsi], ## need to calculate the below... theta_b = theta_b, mrd = mrd) else: tdats=model_tdats.copy() ## end of data process #------------------------------------------------------------# if mod_ext==None: mod_ref='STR_STR.OUT' else: mod_ref='%s.%s'%(mod_ref.split('.')[0], mod_ext) flow_weight = FlowCurve(name='Model weighted') flow_weight.get_model(fn=mod_ref) ## calc Von Mises stress/strain flow_weight.get_eqv() if len(flow_weight.epsilon_vm)<5: lc='k.' else: lc='k-' if iplot: for a in [ax1,ax_vm]: a.plot( flow_weight.epsilon_vm, flow_weight.sigma_vm, lc,label=r'$\langle \sigma^c \rangle$', alpha=1.0) axes_label.__eqv__(a,ft=10) ## plot all stress factors at individual ## deformation levels stress = [] if verbose or True: print '%8s%8s%8s%8s%8s%8s'%( 'S11','S22','S33','S23','S13','S12') ################################################ ## *Serial* Loop over the deformation steps ref_psis = model_rs.psis.copy() nstp = model_rs.dat_model.nstp # nstp = 3 ## debugging for istp in xrange(nstp): """ Dimensions of data arrays for: ============================== sf (nstp, k, nphi, npsi) ig (nstp, nphi, npsi) ehkl (nstp, nphi, npsi) strain (nstp, 6) vf (nstp, nphi, npsi) """ if type(nfrq).__name__=='int': if istp % nfrq !=0: continue if iplot==False and type(istep)!=type(None): nstp = 1 istp = istep print 'processing: %2.2i/%2.2i'%(istp,nstp), #model_rs.sf = model_sfs[istp].copy() ## filter signals where any data is nan ref = _sf_[istp].copy() inds = [] ## masking can be improved by being ## specific on phi axis -> require fix in RS.rs # for iphi in xrange(len(ref[0])): for ipsi in xrange(len(ref_psis)): if not(np.isnan(ref[0:2,:,ipsi]).any()): inds.append(ipsi) model_rs.sf = _sf_[istp][:,:,inds] model_rs.psis = ref_psis[inds] model_rs.npsi = len(model_rs.psis) model_rs.eps0 = model_igs[istp][:,inds] model_rs.ehkl = model_ehkls[istp][:,inds] model_rs.tdat = tdats[istp][:,inds] #-----------------------------------# ## find the sigma ... s11 = model_rs.dat_model.\ flow.sigma[0,0][istp] s22 = model_rs.dat_model.\ flow.sigma[1,1][istp] ## find the stress by fitting ## the elastic strains dsa_sigma = model_rs.find_sigma( ivo=[0,1], init_guess=[0,0,0,0,0,0],#[s11,s22,0,0,0,0], weight = wgt) # None if verbose or True: for i in xrange(6): print '%+7.1f'%(dsa_sigma[i]), print '' stress.append(dsa_sigma) full_Ei = np.zeros((model_rs.nphi,len(raw_psis))) for iphi in xrange(model_rs.nphi): for ipsi in xrange(len(raw_psis)): for k in xrange(2): full_Ei[iphi,ipsi] \ = full_Ei[iphi,ipsi]+\ raw_sfs[istp,k,iphi,ipsi]*dsa_sigma[k] if type(istep)!=type(None) and iplot==False: return model_rs, s11,s22, dsa_sigma[0],dsa_sigma[1],\ raw_psis.copy(),\ raw_vfs[istp].copy(),raw_sfs[istp].copy(),\ full_Ei.copy(),\ DEC_interp[istp].copy() #-----------------------------------# if istp==0: ileg=True else: ileg=True #False if (istep!=None and istp==istep) or\ (istep==None and istp==nstp-1)\ and iplot: fig2,fig3,fig4=__model_fit_plot__( model_rs,ifig=ifig+istp*2+10, istp=istp, nxphi=nxphi,stress_wgt=None, ivo=None,hkl=hkl,ileg=ileg,iwind=iwind, wdeg=wdeg) elif iplot: plt.ioff() f1,f2,f3=__model_fit_plot__( model_rs,ifig=ifig+istp*2+10, ## stress_wgt: the mechanical stress. ## will be used as a reference line istp=istp,nxphi=nxphi,stress_wgt=[s11,s22,0,0,0,0], wgt=raw_vfs[istp].copy(),wgt_psi=raw_psis, full_Ei = full_Ei, full_DEC = raw_sfs[istp].copy(), DEC_interp = DEC_interp[istp].copy(), ivo=[0,1],hkl=hkl,ileg=ileg,iwind=False, ipsi_opt=ipsi_opt) fs.savefig(f2);fe.savefig(f1);f_er.savefig(f3) f1.clf();plt.draw();f2.clf();plt.draw();f3.clf();plt.draw() plt.close(f1);plt.close(f2);plt.close(f3);plt.ion() # end of the serial loop over deformation steps ############################################################ if iplot: fe.close(); fs.close(); f_er.close() stress = np.array(stress).T # diffraction stress flow_dsa = FlowCurve(name='Diffraction Stress') flow_dsa.get_6stress(stress) if type(nfrq).__name__=='NoneType': flow_dsa.get_33strain(model_rs.dat_model.flow.epsilon) elif type(nfrq).__name__=='int': flow_dsa.get_33strain(model_rs.dat_model.flow.epsilon[:,:,::nfrq]) flow_dsa.get_eqv() sigma_wgt = flow_weight.sigma ## Various plots if iplot: for a in [ax1, ax_vm]: a.plot(flow_dsa.epsilon_vm,flow_dsa.sigma_vm,'k+', label=r'$\hat{\sigma}^\mathrm{RS}$') for i in xrange(len(exp_ref)): f = exp_ref[i]; lab = exp_lab[i] edat = np.loadtxt(f).T ax1.plot(edat[0],edat[1],'-',lw=2,label=lab) ## ax1.set_ylim(0.,800) for a in [ax1,ax_vm]: fancy_legend(a,size=10,nscat=1) ax2.plot(sigma_wgt[0,0],sigma_wgt[1,1],'k-') ax2.plot(flow_dsa.sigma[0,0],flow_dsa.sigma[1,1],'k+') ## connector npoints = len(sigma_wgt[0,0]) wgtx = sigma_wgt[0,0]; wgty = sigma_wgt[1,1] dsax = flow_dsa.sigma[0,0]; dsay = flow_dsa.sigma[1,1] # for i in xrange(npoints): # ax2.plot([wgtx[i],dsax[i]],[wgty[i],dsay[i]],'k-',alpha=0.2) ax2.set_ylim(-100,700); ax2.set_xlim(-100,700) ax2.set_aspect('equal') ax2.set_xlabel(r'$\bar{\Sigma}_{11}$ [MPa]',dict(fontsize=15)) ax2.set_ylabel(r'$\bar{\Sigma}_{22}$ [MPa]',dict(fontsize=15)) ax2.locator_params(nbins=3) ax2.set_xticks(np.linspace(300,700,3),dict(fontsize=4)) ax2.set_yticks(np.linspace(300,700,3),dict(fontsize=4)) ax2.grid('on'); plt.show() ## save figures fig1.savefig('flow_%s_%s.pdf'%(hkl,path)) fig_vm.savefig('all_flow_vm.pdf', bbox_inches='tight') fig_vm.savefig('all_flow_vm.ps', bbox_inches='tight') ## fig2.savefig('ehkl_%s_fit_%s.pdf'%(hkl,path)) ## fig3.savefig('sf_%s_%s.pdf'%(hkl,path)) ## fig4.savefig('ehkl_fit_err_%s_%s.pdf'%(hkl,path)) # close figures try: figs=[fig1,fig2,fig3,fig4] for f in figs: try: plt.close(f) except: pass except: pass uet(time.time()-t0) print return model_rs, flow_weight, flow_dsa
def ex_consistency( ifig=50,nxphi=3, exp_ref=[],exp_lab=[],mod_ext=None, mod_ref='STR_STR.OUT',sin2psimx=None, iscatter=False,sigma=5e-5,psimx=None,psi_nbin=1, ig_sub=True,istep=None,hkl=None,iplot=True, iwind=False,wdeg=2,ipsi_opt=1,fn_sff=None, pmargin=None,path='', sf_ext=None,ig_ext=None,iwgt=False): """ Consistency check between 'weighted average' stress and the stress obtained following the stress analysis method (SF, IG strain) ifig = 50 nxphi : display only first nxphi of results along phi axis exp_ref : experimental reference mode_ref : model's weighted average flow curves are given sin2psimx : limiting the maximum sin2psi values, with which stress-fitting is carried out iscatter (False) : introducing a random scattering of 'ehkl' psimx : limiting the maximum psi value psi_nbin : If other than 1, limit the number of data ig_sub : flag whether or not subtract the IG strain istep : If other than None, analysis is carried out for a specific istep hkl : hkl of plane, for the sake of labels. iplot (True) : flag whether or not MPL plot is performed ipsi_opt 0: sin2psi 1: sing(psi) * sin2psi 2: psi pmargin : portional margin of volume that should exceed to contribute to the ehkl/SF/IG in model_rs path : place holder for strain path sf_ext : Overwrite stress factor ig_ext : Overwrite IG strain iwgt : Whether or not accounting for 'weight' """ from rs import ResidualStress,u_epshkl,filter_psi,\ filter_psi2,psi_reso, psi_reso2, psi_reso3 from MP.mat import mech # mech is a module FlowCurve = mech.FlowCurve if iplot: from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from MP.lib import mpl_lib,axes_label wide_fig = mpl_lib.wide_fig fancy_legend = mpl_lib.fancy_legend ## Collection of figures at various plastic strains fe = PdfPages('all_ehkl_fits_%s_%s.pdf'%(hkl,path)) fs = PdfPages('all_stress_factors_%s_%s.pdf'%(hkl,path)) f_er = PdfPages('all_Ei-ehkl-e0_%s_%s.pdf'%(hkl,path)) # fig1 is 'flow_**.pdf' fig1 = wide_fig(ifig,nw=2,nh=1,left=0.2,uw=3.5, w0=0,w1=0.3,right=0,iarange=True) ## ax1: Equivalent Stress/Strain ## ax2: Stress path in the plane stress space (RD/TD) ax1 = fig1.axes[0]; ax2 = fig1.axes[1] ax2.set_axis_bgcolor('0.95') ## i_ip = 1: model case model_rs = ResidualStress( mod_ext=mod_ext, fnmod_ig='igstrain_fbulk_ph1.out', fnmod_sf='igstrain_fbulk_ph1.out', i_ip=1) ## masking array element based on diffraction volume model_rs.dat_model.mask_vol() if pmargin!=None: model_rs.dat_model.mask_vol_margin(pmargin) if mod_ext==None: mod_ref='STR_STR.OUT' else: mod_ref='%s.%s'%( mod_ref.split('.')[0],mod_ext) flow_weight = FlowCurve(name='Model weighted') flow_weight.get_model(fn=mod_ref) flow_weight.get_eqv() ## calc Von Mises stress/strain if len(flow_weight.epsilon_vm)<5: lc='bx' else: lc='bx-' if iplot: ax1.plot(flow_weight.epsilon_vm,flow_weight.sigma_vm, lc,label='Weighted avg',alpha=1.0) axes_label.__eqv__(ax1,ft=10) ## plot all stress factors at individual deformation levels stress = [] print '%8s%8s%8s%8s%8s%8s'%( 'S11','S22','S33','S23','S13','S12') for istp in range(model_rs.dat_model.nstp): """ Dimensions of data arrays for: ============================== sf (nstp, k, nphi, npsi) ig (nstp, nphi, npsi) ehkl (nstp, nphi, npsi) strain (nstp, 6) vf (nstp, nphi, npsi) """ model_rs.sf = model_rs.dat_model.sf[istp] model_rs.eps0 = model_rs.dat_model.ig[istp] model_rs.ehkl = model_rs.dat_model.ehkl[istp] ## whether or not intergranular strain is subtracted. if ig_sub: model_rs.tdat = model_rs.ehkl - model_rs.eps0 else: model_rs.tdat = model_rs.ehkl tdat_ref = model_rs.tdat[::] ## Inducing 'scatters' if iscatter: tdat_scatter = [] for iphi in range(len(tdat_ref)): dum = u_epshkl(tdat_ref[iphi],sigma=sigma) tdat_scatter.append(dum) tdat_scatter = np.array(tdat_scatter) model_rs.tdat = tdat_scatter model_rs.phis = model_rs.dat_model.phi model_rs.psis = model_rs.dat_model.psi model_rs.nphi = len(model_rs.phis) model_rs.npsi = len(model_rs.psis) wgt = model_rs.dat_model.vf[istp][::] if sin2psimx!=None or psimx!=None: filter_psi(model_rs,sin2psimx=sin2psimx,psimx=psimx) wgt = filter_psi2( wgt,sin2psi=np.sin(model_rs.psis)**2, bounds =[0., sin2psimx]) if sf_ext!=None: model_rs.sf = sf_ext[istp] elif ig_ext!=None: model_rs.ig = ig_ext[istp] if psi_nbin!=1: wgt = psi_reso3(wgt,psi=model_rs.psis,ntot=psi_nbin) psi_reso2(model_rs,ntot=psi_nbin) #-----------------------------------# ## find the sigma ... s11 = model_rs.dat_model.flow.sigma[0,0][istp] s22 = model_rs.dat_model.flow.sigma[1,1][istp] if iwgt: pass else: wgt = None # overwrite wgt dsa_sigma = model_rs.find_sigma( ivo=[0,1], init_guess=[0,0,0,0,0,0], #init_guess=[s11,s22,0,0,0,0], weight = wgt # None ) for i in range(6): print '%+7.1f'%(dsa_sigma[i]), print '' stress.append(dsa_sigma) #-----------------------------------# if istp==0: ileg=True else: ileg=False if (istep!=None and istp==istep) or\ (istep==None and istp==model_rs.dat_model.nstp-1)\ and iplot: fig2,fig3,fig4=__model_fit_plot__( model_rs,ifig=ifig+istp*2+10, istp=istp, nxphi=nxphi, stress_wgt=None, ivo=None,hkl=hkl,ileg=ileg,iwind=iwind, wdeg=wdeg) elif iplot: plt.ioff() f1,f2,f3=__model_fit_plot__( model_rs,ifig=ifig+istp*2+10,istp=istp, nxphi=nxphi,stress_wgt=[s11,s22,0,0,0,0], ivo=[0,1],hkl=hkl,ileg=ileg,iwind=False, ipsi_opt=ipsi_opt) fs.savefig(f2);fe.savefig(f1);f_er.savefig(f3) plt.close(f1);plt.close(f2);plt.close(f3) plt.ion() if iplot: fe.close(); fs.close(); f_er.close() stress = np.array(stress).T # diffraction stress flow_dsa = FlowCurve(name='Diffraction Stress') flow_dsa.get_6stress(stress) flow_dsa.get_33strain(model_rs.dat_model.flow.epsilon) flow_dsa.get_eqv() if iplot: ax1.plot(flow_dsa.epsilon_vm,flow_dsa.sigma_vm,'k+', label='Stress Analysis') for i in range(len(exp_ref)): f = exp_ref[i]; lab = exp_lab[i] edat = np.loadtxt(f).T ax1.plot(edat[0],edat[1],'-',lw=2,label=lab) ## ax1.set_ylim(0.,800) fancy_legend(ax1,size=10) sigma_wgt = flow_weight.sigma if iplot: ax2.plot(sigma_wgt[0,0],sigma_wgt[1,1],'bx') ax2.plot(flow_dsa.sigma[0,0],flow_dsa.sigma[1,1],'k+') ## connector npoints = len(sigma_wgt[0,0]) wgtx = sigma_wgt[0,0]; wgty = sigma_wgt[1,1] dsax = flow_dsa.sigma[0,0]; dsay = flow_dsa.sigma[1,1] for i in range(npoints): ax2.plot([wgtx[i],dsax[i]],[wgty[i],dsay[i]],'k-',alpha=0.2) ax2.set_ylim(-100,700); ax2.set_xlim(-100,700) ax2.set_aspect('equal') ax2.set_xlabel(r'$\bar{\Sigma}_{11}$',dict(fontsize=15)) ax2.set_ylabel(r'$\bar{\Sigma}_{22}$',dict(fontsize=15)) ax2.locator_params(nbins=3) ax2.set_xticks(np.linspace(300,700,3),dict(fontsize=4)) ax2.set_yticks(np.linspace(300,700,3),dict(fontsize=4)) ax2.grid('on'); plt.show() ## save figures fig1.savefig('flow_%s_%s.pdf'%(hkl,path)) ## fig2.savefig('ehkl_%s_fit_%s.pdf'%(hkl,path)) ## fig3.savefig('sf_%s_%s.pdf'%(hkl,path)) ## fig4.savefig('ehkl_fit_err_%s_%s.pdf'%(hkl,path)) # close figures plt.close(fig1); plt.close(fig2); plt.close(fig3); plt.close(fig4) return model_rs, flow_weight, flow_dsa
def DEC_evol(steps=[0, 6, 9, 19]): """ Draw evolution of DECs with respect to plastic deformation """ from MP.mat import mech # mech is a module FlowCurve = mech.FlowCurve from mst_ex import use_intp_sfig, return_vf from rs import ResidualStress, filter_psi3 model_rs = ResidualStress(mod_ext=None, fnmod_ig='igstrain_fbulk_ph1.out', fnmod_sf='igstrain_fbulk_ph1.out', i_ip=1) fc = FlowCurve(name='Weighted Average') fc.get_model(fn='STR_STR.OUT') fc.get_eqv() phi = model_rs.dat_model.phi nphi = model_rs.dat_model.nphi psi = model_rs.dat_model.psi sin2psi = sin2psi_opt(psi, 1) DEC_raw = model_rs.dat_model.sf.copy() vf_raw, dum = return_vf() DEC_raw, psi, sin2psi, vf_raw = filter_psi3(sin2psi.copy(), [-0.5, 0.5], DEC_raw, psi.copy(), sin2psi.copy(), vf_raw.copy()) ## filter DEC_raw DEC_raw[DEC_raw == 0] = np.nan evm = fc.epsilon_vm.copy() nstp = fc.nstp fig = plt.figure() # steps = [0,3,5,9] nstp = len(steps) gs = gridspec.GridSpec(nstp, nphi, wspace=0, hspace=0, left=0.25, right=0.8, top=0.8) axes = [] axev = [] axs = [] axv = [] for i in xrange(len(steps)): axes.append([]) axev.append([]) for j in xrange(nphi): ax = fig.add_subplot(gs[i, j]) av = ax.twinx() axs.append(ax) axes[i].append(ax) axv.append(av) axev[i].append(av) ax.locator_params(nbins=4) lab1 = r'$\mathbb{F}_{11}$' lab2 = r'$\mathbb{F}_{22}$' ax.plot(sin2psi, DEC_raw[steps[i], 0, j, :] * 1e6, 'k-', label=lab1) ax.plot(sin2psi, DEC_raw[steps[i], 1, j, :] * 1e6, '-', color='gray', label=lab2) av.plot(sin2psi, vf_raw[steps[i], j, :], color='gray', linewidth=3, alpha=0.7) ax.plot(0, 0, '-', color='gray', linewidth=3, alpha=0.7, label='Vol. F') if i == len(steps) - 1 and j == 0: pass else: mpl_lib.rm_lab(ax, axis='x') mpl_lib.rm_lab(ax, axis='y') if i == len(steps) - 1 and j == nphi - 1: pass else: mpl_lib.rm_lab(av, axis='x') mpl_lib.rm_lab(av, axis='y') tune_xy_lim(axs) tune_x_lim(axs, axis='y') tune_xy_lim(axv) tune_x_lim(axv, axis='y') for i in xrange(len(steps)): #range(nstp): if i == 0: s = r'$\bar{E}^{VM}=%.2f$' % fc.epsilon_vm[steps[i]] else: s = r'$%.2f$' % fc.epsilon_vm[steps[i]] axes[i][-1].annotate(s=s, verticalalignment='center', horizontalalignment='center', rotation=270, size=10, xy=(1.60, 0.5), xycoords='axes fraction') for j in xrange(nphi): s = r'$\phi=%.1f^\circ{}$' % (phi[j] * 180. / np.pi) axes[0][j].annotate(s=s, horizontalalignment='center', size=10, xy=(0.5, 1.2), xycoords='axes fraction') fancy_legend(axes[0][0], size=10, nscat=1, ncol=1, bbox_to_anchor=(-0.1, 1)) deco(ax=axes[-1][0], ft=10, iopt=1, hkl='211', ipsi_opt=1) deco(ax=axev[-1][-1], ft=10, iopt=7, hkl='211', ipsi_opt=1) axev[-1][-1].grid('off') for i in xrange(len(axv)): axv[i].set_ylim(0., 0.3) axv[i].locator_params(nbins=4) fig.savefig("dec_evol.pdf") fig.savefig("dec_evol.png")
def DEC_intp(ss=[1, 2, 4], intps=[0, 3, 4], inds=[79, 90, 120]): """ DEC interpolation comparison intps=0: NN (piecewise linear interpolation) =1: Assign nearest data =2: Cubic =3: Quadratic =4: Linear fit =5: Poly2 =6: poly3 =7: Place-holder for power law fit =8: zero =9: slinear inds=[70,40] """ from MP.mat import mech # mech is a module FlowCurve = mech.FlowCurve from mst_ex import use_intp_sfig, return_vf from rs import ResidualStress model_rs = ResidualStress(mod_ext=None, fnmod_ig='igstrain_fbulk_ph1.out', fnmod_sf='igstrain_fbulk_ph1.out', i_ip=1) psi = model_rs.dat_model.psi sin2psi = sin2psi_opt(psi, 1) DEC_raw = model_rs.dat_model.sf.copy() fc = FlowCurve(name='Weighted Average') fc.get_model(fn='STR_STR.OUT') fc.get_eqv() evm = fc.epsilon_vm.copy() fig = plt.figure() gs = gridspec.GridSpec(len(ss), len(intps), wspace=0, hspace=0, left=0.25, right=0.8, top=0.8) axes = [] ms = ['o', 'x', '+', 'd', '>', 't'] for i in xrange(len(ss)): axes.append([]) for j in xrange(len(intps)): ## interpolated DECs print i, j print ss[i], intps[j] # if i==1 and j==0: # raise IOError _sf_, _ig_ = use_intp_sfig(ss[i], iopt=intps[j], iplot=False, iwgt=False) dum = _sf_.sf.swapaxes(-1, -2).swapaxes(-2, -3) DEC_intp = dum.copy() ax = fig.add_subplot(gs[i, j]) ax.locator_params(nbins=4) axes[i].append(ax) for k in xrange(len(inds)): ind = inds[k] val_sin2psi = sin2psi[ind] val_psi = psi[ind] * 180. / np.pi lab1, lab2 = None, None if k == 0: lab1 = r'Actual $\mathbb{F}_{ij}$' lab2 = r'Interpolated $\mathbb{F}^{\ I}_{ij}$' y_raw = DEC_raw[:, 0, 0, ind] * 1e6 ax.plot(evm, y_raw, 'k-', label=lab1) y_intp = DEC_intp[:, 0, 0, ind] * 1e12 ax.plot(evm, y_intp, 'k--', label=lab2) ax.fill_between(evm, y_raw, y_intp, facecolor='gray', alpha=0.5) ax.plot(evm[::ss[i]], DEC_raw[:, 0, 0, ind][::ss[i]] * 1e6, ms[k], mfc='None', mec='black', label=r'$\psi=%2.0f^\circ{}$' % val_psi) if i == len(ss) - 1 and j == 0: pass else: mpl_lib.rm_lab(ax, axis='x') mpl_lib.rm_lab(ax, axis='y') deco(ax=axes[-1][0], ft=10, iopt=6, ij=[1, 1]) axes[-1][0].grid('off') tune_xy_lim(fig.axes) tune_x_lim(fig.axes, axis='y') ## annotations for j in xrange(len(intps)): if j == 0: s = 'Piecewise' if j == 1: s = 'Quadratic' if j == 2: s = 'Linear fit' if j == 3: s = 'Power law fit' axes[0][j].annotate(s=s, horizontalalignment='center', size=10, xy=(0.5, 1.2), xycoords='axes fraction') for i in xrange(len(ss)): s = r'$f^{\ \mathbb{F}}=^1/_{%i}$' % ss[i] axes[i][-1].annotate(s=s, verticalalignment='center', horizontalalignment='center', rotation=270, size=10, xy=(1.20, 0.5), xycoords='axes fraction') fancy_legend(axes[0][0], size=10, nscat=1, ncol=1, bbox_to_anchor=(-0.1, 1)) fig.savefig('dec_intp.pdf') fig.savefig('dec_intp.png') return model_rs