Exemple #1
0
    def run_single(self):
        try:
            from run.runner import Runner
        except ModuleNotFoundError:
            from runner import Runner

        run = Runner(self.agent,
                     self.environment,
                     epochs=self.args.epochs,
                     episodes=self.args.episodes,
                     horizon=self.args.horizon,
                     mode='train',
                     verbose=self.args.verbose,
                     model_path=self.args.model_path,
                     seed=92)

        run.run()
        run.close(save_full=self.args.eval_path + '/full_' + str(self.agent) +
                  '_evaluation.csv',
                  save_short=self.args.eval_path + '/short_' +
                  str(self.agent) + '_evaluation.csv')
Exemple #2
0
from run.runner import Runner

if __name__ == "__main__":
    run = Runner()
    run.run("graph-5-hand-made", init_state_from_file=False)
Exemple #3
0
                       bayer_pattern_size=2,
                       cfa_sim_out_channels=3,
                       correct_pixel_shift=True,
                       balance_labels=False,
                       label_percentage=1.0,
                       verbose=False)

run_amount = 10
eval_best_amount = 3

networks = [
    NetworkIdentifier.REDUCED_UNET, NetworkIdentifier.BAYER_UNET,
    NetworkIdentifier.BAYER_DENSENET, NetworkIdentifier.CONV_40_1,
    NetworkIdentifier.CONV_40_3, NetworkIdentifier.CONV_40_5,
    NetworkIdentifier.CONV_40_7, NetworkIdentifier.CONV_40_9
]

input_types = [
    InputType.URBAN_HYPERSPECTRAL_4, InputType.URBAN_HYPERSPECTRAL_4_ONLY_RGB
]

for network in networks:
    for input_type in input_types:
        run_config.input_type = input_type
        run_config.network_identifier = network
        # use adagrad from conv_40_7
        if run_config.input_type == NetworkIdentifier.CONV_40_7:
            run_config.optimizer = torch.optim.adagrad
        run_config.update_fingerprint()
        Runner(run_config, run_amount, eval_best_amount).execute_runs()