} maps = [] # Symmetric (6) maps += ["3m"] #, "8m", "25m", "2s3z", "3s5z", "MMM"] # Asymmetric (6) # maps += ["5m_6m", "8m_9m", "10m_11m", "27m_30m"] # maps += ["MMM2", "3s5z_3s6z"] # Micro (10) # maps += ["3s_vs_3z", "3s_vs_4z", "3s_vs_5z"] # maps += ["micro_2M_Z"] # maps += ["micro_baneling"] # maps += ["micro_colossus"] # maps += ["micro_corridor"] # maps += ["micro_focus"] # maps += ["micro_retarget"] # maps += ["micro_bane"] for map_name in maps: name = label extend_param_dicts(param_dicts, shared_params, { "name": name, "env_args.map_name": map_name }, repeats=parallel_repeat)
"env_args.steps": 10, "env_args.good_branches": 2, "batch_size_run": 1, "test_interval": 1000, "test_nepisode": 64, "test_greedy": True, "log_interval": 1000, "runner_log_interval": 2000, "learner_log_interval": 2000, "buffer_cpu_only": True, # 5k buffer is too big for VRAM! "buffer_size": 1000, "epsilon_finish": 0.01, "epsilon_anneal_time": 500, "discrim_size": 32, } name = "noisemix" extend_param_dicts(param_dicts, shared_params, { "name": name, "noise_dim": [16], "bandit_iters": 100, "noise_bandit": [True], "rnn_discrim": [True], "mi_loss": [1], # "entropy_scaling": [0.001, 0.01, 0.1] }, repeats=parallel_repeat)
# "batch_size_run": 1, "test_interval": 30000, "test_nepisode": 8, "test_greedy": True, "log_interval": 30000, "runner_log_interval": 30000, "learner_log_interval": 30000, "buffer_cpu_only": True, # 5k buffer is too big for VRAM! "buffer_size": 3000, "epsilon_finish": 0.05, "epsilon_anneal_time": 250000, #"discrim_size": 32, } name = "noisemix" extend_param_dicts( param_dicts, shared_params, { "env_args.map_name": ["2_corridors"], "name": name, "noise_dim": [16], #"bandit_iters": 100, "noise_bandit": [True], "rnn_discrim": [True], "mi_loss": [0.001], "entropy_scaling": [0.001] }, repeats=parallel_repeat)
"test_interval": 30000, "test_nepisode": 8, "test_greedy": True, "save_model": False, #"save_model_interval": 250 * 1000, "log_interval": 30000, "runner_log_interval": 30000, "learner_log_interval": 30000, "buffer_cpu_only": True, # 5k buffer is too big for VRAM! # "training_iters": 1, "buffer_size": 3000 } name = label + config + "_" + env_config extend_param_dicts(param_dicts, shared_params, { "lr": [0.0005], "epsilon_anneal_time": [250000], "env_args.reward_only_positive": [False], "env_args.reward_negative_scale": [1.0], "env_args.map_name": ["8m", "MMM2", "10m_vs_11m"], "name": name, "rnn_hidden_dim": [128], "obs_agent_id": [False], "grad_norm_clip": [10], "target_update_mode": ["soft"], "target_update_tau": [0.05], "mi_loss": [0.001, 0.01], "agent": ["noise_rnn_deep"] }, repeats=parallel_repeat)