def main(): bots = [MyBot()] bots.extend(other_bots.get_bots(5, 2)) # Plot a single run. Useful for debugging and visualizing your # bot's performance. Also prints the bot's final profit, but this # will be very noisy. #plot_simulation.run(bots, lmsr_b=250) # Calculate statistics over many runs. Provides the mean and # standard deviation of your bot's profit. run_experiments.run(bots, simulations=1000, lmsr_b=250)
def main(): bots = [MyBot()] bots.extend(other_bots.get_bots(5, 2)) # Plot a single run. Useful for debugging and visualizing your # bot's performance. Also prints the bot's final profit, but this # will be very noisy. #plot_simulation.run(bots, lmsr_b=150, timesteps=100) # Calculate statistics over many runs. Provides the mean and # standard deviation of your bot's profit. run_experiments.run(bots, simulations=1000, lmsr_b=150, num_processes=2, timesteps=100)
def main(): bots = [MyBot()] # 5,2 to start num_fundamentals = 8 num_technical = 2 bots.extend(other_bots.get_bots(num_fundamentals, num_technical)) # Plot a single run. Useful for debugging and visualizing your # bot's performance. Also prints the bot's final profit, but this # will be very noisy. plot_simulation.run(bots, lmsr_b=250) # Calculate statistics over many runs. Provides the mean and # standard deviation of your bot's profit. run_experiments.run(bots, num_processes=4, simulations=1000, lmsr_b=250)
def main(): bots = [MyBot()] fundamental = 10 technical = 1 bots.extend(other_bots.get_bots(fundamental,technical)) print ('Fundamental: {}, Technical: {}'.format(fundamental,technical)) # Plot a single run. Useful for debugging and visualizing your # bot's performance. Also prints the bot's final profit, but this # will be very noisy. #plot_simulation.run(bots, 200, lmsr_b=250) # Calculate statistics over many runs. Provides the mean and # standard deviation of your bot's profit. run_experiments.run(bots, num_processes=4, simulations=2000, lmsr_b=250)
def run_simulationsHIDDEN(env,f_causal,f_common,f_hidden,methods,n_repeats): N = 200 D = 10 opts = {} if methods=='ALL': methods = ['CV_GPbase_LIN','CV_GPkronprod_LIN','CV_GPkronsum_LIN','CV_GPpool_LIN','CV_GPpool_LIN'] opts['n_c'] = 1 opts['n_sigma'] = 1 opts['nfolds'] = 10 opts['standardizedX'] = False opts['standardizedY'] = False opts['min_iter'] = 5 opts['max_iter'] = 200 opts['maf'] = None out_dir = os.path.join(env['out_dir'],'simulations_hidden') if not os.path.exists(out_dir): os.makedirs(out_dir) fn_out = os.path.join(out_dir,'results_N%d_D%d_causal%02d_common%02d_hidden%02d.hdf5'%(N,D,10*f_causal,10*f_common,10*f_hidden)) f = h5py.File(fn_out,'w') for rep_id in range(n_repeats): # load data data,RV = load_simulationsHIDDEN(env,N,D,f_causal,f_common,f_hidden,rep_id) # run experiments SP.random.seed(0) out = f.create_group('rep%d'%rep_id) try: run_experiments.run(methods,data,opts,out) except: print 'ouch, something is wrong...' f.close()