def score_training_set(): # Generate a data frame that points to the challenge files tr_files, te_files = phyc.get_files() score = Challenge2018Score() for i in range(0, np.size(tr_files, 0)): gc.collect() sys.stdout.write('Evaluating training subject: %d/%d' % (i + 1, np.size(tr_files, 0))) sys.stdout.flush() record_name = tr_files.header.values[i][:-4] predictions = R.classify_record(record_name) arousals = phyc.import_arousals(tr_files.arousal.values[i]) arousals = np.ravel(arousals) score.score_record(arousals, predictions, record_name) auroc = score.record_auroc(record_name) auprc = score.record_auprc(record_name) print(' AUROC:%f AUPRC:%f' % (auroc, auprc)) print() auroc_g = score.gross_auroc() auprc_g = score.gross_auprc() print('Training AUROC Performance (gross): %f' % auroc_g) print('Training AUPRC Performance (gross): %f' % auprc_g) print()
def evaluate_test_set(): # Generate a data frame that points to the challenge files tr_files, te_files = phyc.get_files() for i in range(0, np.size(te_files, 0)): gc.collect() print('Evaluating test subject: %d/%d' % (i + 1, np.size(te_files, 0))) record_name = te_files.header.values[i][:-4] output_file = os.path.basename(record_name) + '.vec' predictions = R.classify_record(record_name) np.savetxt(output_file, predictions, fmt='%.3f')