Exemple #1
0
    #priorgraphs=[]
    #prioritems=[]
    #for osub in subs:
    #    if osub != subj:
    #        g, i = rw.read_csv('s2016.csv',cols=("node1","node2"),header=True,filters={"subj": osub, "uinvite": "1"})
    #        priorgraphs.append(g)
    #        prioritems.append(i)
    #priordict = rw.genGraphPrior(priorgraphs, prioritems)

    toydata.numx = len(Xs)
    prior = (priordict, items)

    # u-invite
    uinvite_prior_graph, bestval = rw.uinvite(Xs,
                                              toydata,
                                              numnodes,
                                              fitinfo=fitinfo,
                                              prior=prior)

    # rw
    rw_graph = rw.noHidden(Xs, numnodes)

    g = nx.to_networkx_graph(uinvite_prior_graph)
    g2 = nx.to_networkx_graph(rw_graph)

    nx.relabel_nodes(g, items, copy=False)
    nx.relabel_nodes(g2, items, copy=False)

    rw.write_csv([g, g2], subj + "usf_sparse.csv",
                 subj)  # write multiple graphs
Exemple #2
0
    category="animals"
    Xs, items, irts.data, numnodes=rw.readX(subj,category,'./Spring2015/results_cleaned.csv',ignorePerseverations=True)

    # uinvite prior
    priorgraphs=[]
    prioritems=[]
    for osub in subs:
        if osub != subj:
            g, i = rw.read_csv('Sdirected2015.csv',cols=("node1","node2"),header=True,filters={"subj": osub, "uinvite": "1"},undirected=False)
            priorgraphs.append(g)
            prioritems.append(i)
    priordict = rw.genGraphPrior(priorgraphs, prioritems)

    toydata.numx = len(Xs)
    prior = (priordict, items)

    # u-invite
    directed_prior_graph, bestval=rw.uinvite(Xs, toydata, numnodes, fitinfo=fitinfo, prior=prior)

    # rw
    rw_graph=rw.noHidden(Xs, numnodes)


    g=nx.DiGraph(directed_prior_graph)
    g2=nx.DiGraph(rw_graph)

    nx.relabel_nodes(g, items, copy=False)
    nx.relabel_nodes(g2, items, copy=False)

    rw.write_csv([g, g2],subj+"_directed_prior_nosparse.csv",subj,directed=True) # write multiple graphs
Exemple #3
0
    # goni
    goni_graph=rw.goni(Xs, numnodes, td=toydata, valid=0, fitinfo=fitinfo)
    
    # prior
    #toygraphs.numnodes = numnodes
    #prior=rw.genSWPrior(toygraphs, fitinfo.prior_samplesize)
    #prior_graph, bestval=rw.uinvite(Xs, toydata, numnodes, fitinfo=fitinfo, prior=prior)

    # priming
    #toydata.priming = 0.5
    #priming_graph, bestval=rw.uinvite(Xs, toydata, numnodes, fitinfo=fitinfo)

    # complete (irts, prior,, priming)
    #complete_graph, bestval=rw.uinvite(Xs, toydata, numnodes, fitinfo=fitinfo, prior=prior, irts=irts)
    #toydata.priming = 0.0 # reset priming

    g=nx.to_networkx_graph(rw_graph)
    g2=nx.to_networkx_graph(goni_graph)
    g3=nx.to_networkx_graph(uinvite_graph)
    g4=nx.to_networkx_graph(irt5_graph)
    g5=nx.to_networkx_graph(irt95_graph)

    nx.relabel_nodes(g, items, copy=False)
    nx.relabel_nodes(g2, items, copy=False)
    nx.relabel_nodes(g3, items, copy=False)
    nx.relabel_nodes(g4, items, copy=False)
    nx.relabel_nodes(g5, items, copy=False)

    rw.write_csv([g, g2, g3, g4, g5],subj+".csv",subj) # write multiple graphs
Exemple #4
0
Xs, items, irts, numnodes=rw.readX(subj,category,'exp/results_cleaned.csv')

# Find best graph!
best_graph, bestval=rw.findBestGraph(Xs, irts, jeff, beta)
best_rw=rw.noHidden(Xs, numnodes)

# convert best graph to networkX graph, add labels, write to file
g=nx.to_networkx_graph(best_graph)
g2=nx.to_networkx_graph(best_rw)

nx.relabel_nodes(g, items, copy=False)
nx.relabel_nodes(g2, items, copy=False)

#nx.write_dot(g,subj+".dot")           # write to DOT
#rw.write_csv(g,subj+".csv",subj)      # write single graph
rw.write_csv([g, g2],subj+".csv",subj) # write multiple graphs


# write lists to file
#with open(subj+'_lists.csv','w') as f:
#    for i, x in enumerate(Xs):
#        for item in x:
#            print>>f, str(i)+","+items[item]

# items removed
#for i in np.argwhere(graph5-oldgraph==-1):
#    if i[0]>i[1]:   # skip duplicates
#        print items[i[0]],items[i[1]]

# items added
#for i in np.argwhere(graph5-oldgraph==1):
Exemple #5
0
# Find best graph!
#best_graph, bestval=rw.findBestGraph(Xs, irts, jeff, beta)
best_graph, bestval = rw.findBestGraph(Xs, numnodes=numnodes)
best_rw = rw.noHidden(Xs, numnodes)

# convert best graph to networkX graph, add labels, write to file
g = nx.to_networkx_graph(best_graph)
g2 = nx.to_networkx_graph(best_rw)

nx.relabel_nodes(g, items, copy=False)
nx.relabel_nodes(g2, items, copy=False)

#nx.write_dot(g,subj+".dot")           # write to DOT
#rw.write_csv(g,subj+".csv",subj)      # write single graph
rw.write_csv([g, g2], subj + ".csv", subj)  # write multiple graphs

# write lists to file
#with open(subj+'_lists.csv','w') as f:
#    for i, x in enumerate(Xs):
#        for item in x:
#            print>>f, str(i)+","+items[item]

# items removed
#for i in np.argwhere(graph5-oldgraph==-1):
#    if i[0]>i[1]:   # skip duplicates
#        print items[i[0]],items[i[1]]

# items added
#for i in np.argwhere(graph5-oldgraph==1):
#    if i[0]>i[1]:   # skip duplicates
Exemple #6
0
    extra_data={}

    for inum, i in enumerate(uinvite_graph):
        for jnum, j in enumerate(i):
            if uinvite_graph[inum,jnum]==1:
                uinvite_graph[inum,jnum]=0
                uinvite_graph[jnum,inum]=0
                result=rw.probX(Xs, uinvite_graph, toydata, forceCompute=True)
                if items[inum] not in extra_data:
                    extra_data[items[inum]]={}
                if items[jnum] not in extra_data:
                    extra_data[items[jnum]]={}
                extra_data[items[inum]][items[jnum]] = (result[0], np.mean(rw.flatten_list(result[1])))
                extra_data[items[jnum]][items[inum]] = (result[0], np.mean(rw.flatten_list(result[1])))
                uinvite_graph[inum,jnum]=1
                uinvite_graph[jnum,inum]=1

    g=nx.to_networkx_graph(uinvite_graph)
    nx.relabel_nodes(g, items, copy=False)
    rw.write_csv(g,subj+".csv",subj,extra_data=extra_data) # write multiple graphs


#@joe
#what if we only include edges that are either bidirectional or uni-directional AND in the undirected graph
#there's also a standard procedure for converting directed graphs into undirected graphs
#it's called moralization

# match edge density of USF network (i.e., prior on edges)

Exemple #7
0
})

for subj in subs:
    category = "animals"
    Xs, items, irts.data, numnodes = rw.readX(
        subj, category, './Spring2015/results_cleaned.csv')
    uinvite_irt9, bestval = rw.uinvite(Xs,
                                       toydata,
                                       numnodes,
                                       fitinfo=fitinfo,
                                       irts=irts)
    irts.irt_weight = 0.95
    uinvite_irt95, bestval = rw.uinvite(Xs,
                                        toydata,
                                        numnodes,
                                        fitinfo=fitinfo,
                                        irts=irts)
    irts.irt_weight = 0.5
    uinvite_irt5, bestval = rw.uinvite(Xs,
                                       toydata,
                                       numnodes,
                                       fitinfo=fitinfo,
                                       irts=irts)
    g = nx.to_networkx_graph(uinvite_irt5)
    g2 = nx.to_networkx_graph(uinvite_irt9)
    g3 = nx.to_networkx_graph(uinvite_irt95)
    nx.relabel_nodes(g, items, copy=False)
    nx.relabel_nodes(g2, items, copy=False)
    nx.relabel_nodes(g3, items, copy=False)
    rw.write_csv([g, g2, g3], subj + "_irt.csv", subj)  # write multiple graphs