Exemple #1
0
    def Catenoid(c=1, name="Catenoid"):
        r"""
        Return a catenoid surface, with parametric representation

        .. MATH::

            \begin{aligned}
              x(u, v) & = c \cosh(v/c) \cos(u); \\
              y(u, v) & = c \cosh(v/c) \sin(u); \\
              z(u, v) & = v.
            \end{aligned}

        INPUT:

        - ``c`` -- surface parameter.

        - ``name`` -- string. Name of the surface.

        For more information, see :wikipedia:`Catenoid`.

        EXAMPLES::

            sage: cat = surfaces.Catenoid(); cat
            Parametrized surface ('Catenoid') with equation (cos(u)*cosh(v), cosh(v)*sin(u), v)
            sage: cat.plot()
            Graphics3d Object
        """
        u, v = var('u, v')
        catenoid_eq = [c * cosh(v / c) * cos(u), c * cosh(v / c) * sin(u), v]
        coords = ((u, 0, 2 * pi), (v, -1, 1))
        return ParametrizedSurface3D(catenoid_eq, coords, name)
    def Catenoid(c=1, name="Catenoid"):
        r"""
        Returns a catenoid surface, with parametric representation

        .. MATH::

            \begin{aligned}
              x(u, v) & = c \cosh(v/c) \cos(u); \\
              y(u, v) & = c \cosh(v/c) \sin(u); \\
              z(u, v) & = v.
            \end{aligned}

        INPUT:

        - ``c`` -- surface parameter.

        - ``name`` -- string. Name of the surface.


        EXAMPLES::

            sage: cat = surfaces.Catenoid(); cat
            Parametrized surface ('Catenoid') with equation (cos(u)*cosh(v), cosh(v)*sin(u), v)
            sage: cat.plot()
            Graphics3d Object

        """
        u, v = var("u, v")
        catenoid_eq = [c * cosh(v / c) * cos(u), c * cosh(v / c) * sin(u), v]
        coords = ((u, 0, 2 * pi), (v, -1, 1))

        return ParametrizedSurface3D(catenoid_eq, coords, name)
    def show(self, show_hyperboloid=True, **graphics_options):
        r"""
        Plot ``self``.

        EXAMPLES::

            sage: from sage.geometry.hyperbolic_space.hyperbolic_geodesic import *
            sage: g = HyperbolicPlane().HM().random_geodesic()
            sage: g.show()
            Graphics3d Object
        """
        x = SR.var('x')
        opts = self.graphics_options()
        opts.update(graphics_options)
        v1, u2 = [vector(k.coordinates()) for k in self.endpoints()]
        # Lorentzian Gram Shmidt.  The original vectors will be
        # u1, u2 and the orthogonal ones will be v1, v2.  Except
        # v1 = u1, and I don't want to declare another variable,
        # hence the odd naming convention above.
        # We need the Lorentz dot product of v1 and u2.
        v1_ldot_u2 = u2[0] * v1[0] + u2[1] * v1[1] - u2[2] * v1[2]
        v2 = u2 + v1_ldot_u2 * v1
        v2_norm = sqrt(v2[0]**2 + v2[1]**2 - v2[2]**2)
        v2 = v2 / v2_norm
        v2_ldot_u2 = u2[0] * v2[0] + u2[1] * v2[1] - u2[2] * v2[2]
        # Now v1 and v2 are Lorentz orthogonal, and |v1| = -1, |v2|=1
        # That is, v1 is unit timelike and v2 is unit spacelike.
        # This means that cosh(x)*v1 + sinh(x)*v2 is unit timelike.
        hyperbola = cosh(x) * v1 + sinh(x) * v2
        endtime = arcsinh(v2_ldot_u2)
        from sage.plot.plot3d.all import parametric_plot3d
        pic = parametric_plot3d(hyperbola, (x, 0, endtime), **graphics_options)
        if show_hyperboloid:
            pic += self._model.get_background_graphic()
        return pic
    def show(self, show_hyperboloid=True, **graphics_options):
        r"""
        Plot ``self``.

        EXAMPLES::

            sage: from sage.geometry.hyperbolic_space.hyperbolic_geodesic import *
            sage: g = HyperbolicPlane().HM().random_geodesic()
            sage: g.show()
            Graphics3d Object
        """
        x = SR.var('x')
        opts = self.graphics_options()
        opts.update(graphics_options)
        v1, u2 = [vector(k.coordinates()) for k in self.endpoints()]
        # Lorentzian Gram Shmidt.  The original vectors will be
        # u1, u2 and the orthogonal ones will be v1, v2.  Except
        # v1 = u1, and I don't want to declare another variable,
        # hence the odd naming convention above.
        # We need the Lorentz dot product of v1 and u2.
        v1_ldot_u2 = u2[0]*v1[0] + u2[1]*v1[1] - u2[2]*v1[2]
        v2 = u2 + v1_ldot_u2 * v1
        v2_norm = sqrt(v2[0]**2 + v2[1]**2 - v2[2]**2)
        v2 = v2 / v2_norm
        v2_ldot_u2 = u2[0]*v2[0] + u2[1]*v2[1] - u2[2]*v2[2]
        # Now v1 and v2 are Lorentz orthogonal, and |v1| = -1, |v2|=1
        # That is, v1 is unit timelike and v2 is unit spacelike.
        # This means that cosh(x)*v1 + sinh(x)*v2 is unit timelike.
        hyperbola = cosh(x)*v1 + sinh(x)*v2
        endtime = arcsinh(v2_ldot_u2)
        from sage.plot.plot3d.all import parametric_plot3d
        pic = parametric_plot3d(hyperbola, (x, 0, endtime), **graphics_options)
        if show_hyperboloid:
            pic += self._model.get_background_graphic()
        return pic
Exemple #5
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: y=var('y')
            sage: bessel_I(y,x)
            bessel_I(y, x)
            sage: bessel_I(0.0, 1.0)
            1.26606587775201
            sage: bessel_I(1/2, 1)
            sqrt(2)*sinh(1)/sqrt(pi)
            sage: bessel_I(-1/2, pi)
            sqrt(2)*cosh(pi)/pi
        """
        if (not isinstance(n, Expression) and not isinstance(x, Expression)
                and (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        # special identities
        if n == Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * sinh(x)
        elif n == -Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * cosh(x)

        return None  # leaves the expression unevaluated
Exemple #6
0
    def _eval_(self, a, z):
        """
        EXAMPLES::

            sage: struve_L(-2,0)
            struve_L(-2, 0)
            sage: struve_L(-1,0)
            0
            sage: struve_L(pi,0)
            0
            sage: struve_L(-1/2,x)
            sqrt(2)*sqrt(1/(pi*x))*sinh(x)
            sage: struve_L(1/2,1)
            sqrt(2)*(cosh(1) - 1)/sqrt(pi)
            sage: struve_L(2,x)
            struve_L(2, x)
            sage: struve_L(-3/2,x)
            -bessel_I(3/2, x)
        """
        from sage.symbolic.ring import SR
        if z.is_zero() \
                and (SR(a).is_numeric() or SR(a).is_constant()) \
                and a.real() >= -1:
                return ZZ(0)
        if a == -Integer(1)/2:
            from sage.functions.hyperbolic import sinh
            return sqrt(2/(pi*z)) * sinh(z)
        if a == Integer(1)/2:
            from sage.functions.hyperbolic import cosh
            return sqrt(2/(pi*z)) * (cosh(z)-1)
        if a < 0 and not SR(a).is_integer() and SR(2*a).is_integer():
            from sage.rings.rational_field import QQ
            n = (a*(-2) - 1)/2
            return Integer(-1)**n * bessel_I(n+QQ(1)/2, z)
Exemple #7
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: y=var('y')
            sage: bessel_I(y,x)
            bessel_I(y, x)
            sage: bessel_I(0.0, 1.0)
            1.26606587775201
            sage: bessel_I(1/2, 1)
            sqrt(2)*sinh(1)/sqrt(pi)
            sage: bessel_I(-1/2, pi)
            sqrt(2)*cosh(pi)/pi
        """
        if (not isinstance(n, Expression) and not isinstance(x, Expression) and
                (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        # special identities
        if n == Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * sinh(x)
        elif n == -Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * cosh(x)

        return None  # leaves the expression unevaluated
 def RQ(delta):
     # this is the quotient R(F_0,z)/R(F_0,z(F)) for a generic z
     # at distance delta from j. See Lemma 4.2 in [HS2018].
     cd = cosh(delta).n(prec=prec)
     sd = sinh(delta).n(prec=prec)
     return prod(
         [cd + (cost * phi[0] + sint * phi[1]) * sd for phi in phis])
Exemple #9
0
def get_bound_poly(F, prec=53, norm_type='norm', emb=None):
    """
    The hyperbolic distance from `j` which must contain the smallest poly.

    This defines the maximum possible distance from `j` to the `z_0` covariant
    in the hyperbolic 3-space for which the associated `F` could have smaller
    coefficients.

    INPUT:

    - ``F`` -- binary form of degree at least 3 with no multiple roots

    - ``prec``-- positive integer. precision to use in CC

    - ``norm_type`` -- string, either norm or height

    - ``emb`` -- embedding into CC

    OUTPUT: a positive real number

    EXAMPLES::

        sage: from sage.rings.polynomial.binary_form_reduce import get_bound_poly
        sage: R.<x,y> = QQ[]
        sage: F = -2*x^3 + 2*x^2*y + 3*x*y^2 + 127*y^3
        sage: get_bound_poly(F)
        28.0049336543295
        sage: get_bound_poly(F, norm_type='height')
        111.890642019092
    """
    def coshdelta(z):
        #The cosh of the hyperbolic distance from z = t+uj to j
        return (z.norm() + 1) / (2 * z.imag())

    if F.base_ring() != ComplexField(prec=prec):
        if emb is None:
            compF = F.change_ring(ComplexField(prec=prec))
        else:
            compF = F.change_ring(emb)
    else:
        compF = F
    n = F.degree()
    assert (n > 2), "degree 2 polynomial"

    z0F, thetaF = covariant_z0(compF, prec=prec, emb=emb)
    cosh_delta = coshdelta(z0F)
    if norm_type == 'norm':
        #euclidean norm squared
        normF = (sum([abs(i)**2 for i in compF.coefficients()]))
        target = (2**(n - 1)) * normF / thetaF
    elif norm_type == 'height':
        hF = e**max([c.global_height(prec=prec)
                     for c in F.coefficients()])  #height
        target = (2**(n - 1)) * (n + 1) * (hF**2) / thetaF
    else:
        raise ValueError('type must be norm or height')
    return cosh(epsinv(F, target, prec=prec))
 def _0f1(b, z):
     F12 = cosh(2 * sqrt(z))
     F32 = sinh(2 * sqrt(z)) / (2 * sqrt(z))
     if 2 * b == 1:
         return F12
     if 2 * b == 3:
         return F32
     if 2 * b > 3:
         return ((b - 2) * (b - 1) / z *
                 (_0f1(b - 2, z) - _0f1(b - 1, z)))
     if 2 * b < 1:
         return (_0f1(b + 1, z) + z / (b *
                                       (b + 1)) * _0f1(b + 2, z))
     raise ValueError
Exemple #11
0
 def _0f1(b, z):
     F12 = cosh(2 * sqrt(z))
     F32 = sinh(2 * sqrt(z)) / (2 * sqrt(z))
     if 2 * b == 1:
         return F12
     if 2 * b == 3:
         return F32
     if 2 * b > 3:
         return ((b - 2) * (b - 1) / z * (_0f1(b - 2, z) -
                 _0f1(b - 1, z)))
     if 2 * b < 1:
         return (_0f1(b + 1, z) + z / (b * (b + 1)) *
                 _0f1(b + 2, z))
     raise ValueError
Exemple #12
0
    def _derivative_(self, z, diff_param=None):
        """
        The derivative of `\operatorname{Chi}(z)` is `\cosh(z)/z`.

        EXAMPLES::

            sage: x = var('x')
            sage: f = cosh_integral(x)
            sage: f.diff(x)
            cosh(x)/x

            sage: f = cosh_integral(ln(x))
            sage: f.diff(x)
            cosh(log(x))/(x*log(x))

        """
        return cosh(z)/z
Exemple #13
0
    def _derivative_(self, z, diff_param=None):
        """
        The derivative of `\operatorname{Chi}(z)` is `\cosh(z)/z`.

        EXAMPLES::

            sage: x = var('x')
            sage: f = cosh_integral(x)
            sage: f.diff(x)
            cosh(x)/x

            sage: f = cosh_integral(ln(x))
            sage: f.diff(x)
            cosh(log(x))/(x*log(x))

        """
        return cosh(z) / z
Exemple #14
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: y=var('y')
            sage: bessel_I(y,x)
            bessel_I(y, x)
            sage: bessel_I(0.0, 1.0)
            1.26606587775201
            sage: bessel_I(1/2, 1)
            sqrt(2)*sinh(1)/sqrt(pi)
            sage: bessel_I(-1/2, pi)
            sqrt(2)*cosh(pi)/pi
        """
        # special identities
        if n == Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * sinh(x)
        elif n == -Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * cosh(x)
Exemple #15
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: y=var('y')
            sage: bessel_I(y,x)
            bessel_I(y, x)
            sage: bessel_I(0.0, 1.0)
            1.26606587775201
            sage: bessel_I(1/2, 1)
            sqrt(2)*sinh(1)/sqrt(pi)
            sage: bessel_I(-1/2, pi)
            sqrt(2)*cosh(pi)/pi
        """
        # special identities
        if n == Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * sinh(x)
        elif n == -Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * cosh(x)
Exemple #16
0
def get_bound_dynamical(F, f, m=1, dynatomic=True, prec=53, emb=None):
    """
    The hyperbolic distance from `j` which must contain the smallest map.

    This defines the maximum possible distance from `j` to the `z_0` covariant
    of the associated binary form `F` in the hyperbolic 3-space
    for which the map `f`` could have smaller coefficients.

    INPUT:

    - ``F`` -- binary form of degree at least 3 with no multiple roots associated
      to ``f``

    - ``f`` -- a dynamical system on `P^1`

    - ``m`` - positive integer. the period used to create ``F``

    - ``dynatomic`` -- boolean. whether ``F`` is the periodic points or the
      formal periodic points of period ``m`` for ``f``

    - ``prec``-- positive integer. precision to use in CC

    - ``emb`` -- embedding into CC

    OUTPUT: a positive real number

    EXAMPLES::

        sage: from sage.dynamics.arithmetic_dynamics.endPN_minimal_model import get_bound_dynamical
        sage: P.<x,y> = ProjectiveSpace(QQ,1)
        sage: f = DynamicalSystem([50*x^2 + 795*x*y + 2120*y^2, 265*x^2 + 106*y^2])
        sage: get_bound_dynamical(f.dynatomic_polynomial(1), f)
        35.5546923182219
    """
    def coshdelta(z):
        #The cosh of the hyperbolic distance from z = t+uj to j
        return (z.norm() + 1) / (2 * z.imag())

    if F.base_ring() != ComplexField(prec=prec):
        if emb is None:
            compF = F.change_ring(ComplexField(prec=prec))
        else:
            compF = F.change_ring(emb)
    else:
        compF = F
    n = F.degree()

    z0F, thetaF = covariant_z0(compF, prec=prec, emb=emb)
    cosh_delta = coshdelta(z0F)
    d = f.degree()
    hF = e**f.global_height(prec=prec)
    #get precomputed constants C,k
    if m == 1:
        C = 4 * d + 2
        k = 2
    else:
        Ck_values = {(False, 2, 2): (322, 6), (False, 2, 3): (385034, 14),\
                     (False, 2, 4): (4088003923454, 30), (False, 3, 2): (18044, 8),\
                     (False, 4, 2): (1761410, 10), (False, 5, 2): (269283820, 12),\
                     (True, 2, 2): (43, 4), (True, 2, 3): (106459, 12),\
                     (True, 2, 4): (39216735905, 24), (True, 3, 2): (1604, 6),\
                     (True, 4, 2): (114675, 8), (True, 5, 2): (14158456, 10)}
        try:
            C, k = Ck_values[(dynatomic, d, m)]
        except KeyError:
            raise ValueError("constants not computed for this (m,d) pair")
    if n == 2 and d == 2:
        #bound with epsilonF = 1
        bound = 2 * ((2 * C * (hF**k)) / (thetaF))
    else:
        bound = cosh(epsinv(F, (2**(n - 1)) * C * (hF**k) / thetaF, prec=prec))
    return bound
Exemple #17
0
def get_bound_dynamical(F, f, m=1, dynatomic=True, prec=53, emb=None):
    """
    The hyperbolic distance from `j` which must contain the smallest map.

    This defines the maximum possible distance from `j` to the `z_0` covariant
    of the assocaited binary form `F` in the hyperbolic 3-space
    for which the map `f`` could have smaller coefficients.

    INPUT:

    - ``F`` -- binary form of degree at least 3 with no multiple roots associated
      to ``f``

    - ``f`` -- a dynamical system on `P^1`

    - ``m`` - positive integer. the period used to create ``F``

    - ``dyantomic`` -- boolean. whether ``F`` is the periodic points or the
      formal periodic points of period ``m`` for ``f``

    - ``prec``-- positive integer. precision to use in CC

    - ``emb`` -- embedding into CC

    OUTPUT: a positive real number

    EXAMPLES::

        sage: from sage.dynamics.arithmetic_dynamics.endPN_minimal_model import get_bound_dynamical
        sage: P.<x,y> = ProjectiveSpace(QQ,1)
        sage: f = DynamicalSystem([50*x^2 + 795*x*y + 2120*y^2, 265*x^2 + 106*y^2])
        sage: get_bound_dynamical(f.dynatomic_polynomial(1), f)
        35.5546923182219
    """
    def coshdelta(z):
        #The cosh of the hyperbolic distance from z = t+uj to j
        return (z.norm() + 1)/(2*z.imag())
    if F.base_ring() != ComplexField(prec=prec):
        if emb is None:
            compF = F.change_ring(ComplexField(prec=prec))
        else:
            compF = F.change_ring(emb)
    else:
        compF = F
    n = F.degree()

    z0F, thetaF = covariant_z0(compF, prec=prec, emb=emb)
    cosh_delta = coshdelta(z0F)
    d = f.degree()
    hF = e**f.global_height(prec=prec)
    #get precomputed constants C,k
    if m == 1:
        C = 4*d+2;k=2
    else:
        Ck_values = {(False, 2, 2): (322, 6), (False, 2, 3): (385034, 14),\
                     (False, 2, 4): (4088003923454, 30), (False, 3, 2): (18044, 8),\
                     (False, 4, 2): (1761410, 10), (False, 5, 2): (269283820, 12),\
                     (True, 2, 2): (43, 4), (True, 2, 3): (106459, 12),\
                     (True, 2, 4): (39216735905, 24), (True, 3, 2): (1604, 6),\
                     (True, 4, 2): (114675, 8), (True, 5, 2): (14158456, 10)}
        try:
            C,k = Ck_values[(dynatomic,d,m)]
        except KeyError:
            raise ValueError("constants not computed for this (m,d) pair")
    if n == 2 and d == 2:
        #bound with epsilonF = 1
        bound = 2*((2*C*(hF**k))/(thetaF))
    else:
        bound = cosh(epsinv(F, (2**(n-1))*C*(hF**k)/thetaF, prec=prec))
    return bound