Exemple #1
0
def FinitelyGeneratedAbelianPresentation(int_list):
    r"""
    Return canonical presentation of finitely generated abelian group.

    INPUT:

    - ``int_list`` -- List of integers defining the group to be returned, the defining list
      is reduced to the invariants of the input list before generating the corresponding
      group.

    OUTPUT:

    Finitely generated abelian group, `\ZZ_{n_1} \times \ZZ_{n_2} \times \cdots \times \ZZ_{n_k}`
    as a finite presentation, where `n_i` forms the invariants of the input list.

    EXAMPLES::

        sage: groups.presentation.FGAbelian([2,2])
        Finitely presented group < a, b | a^2, b^2, a^-1*b^-1*a*b >
        sage: groups.presentation.FGAbelian([2,3])
        Finitely presented group < a | a^6 >
        sage: groups.presentation.FGAbelian([2,4])
        Finitely presented group < a, b | a^2, b^4, a^-1*b^-1*a*b >

    You can create free abelian groups::

        sage: groups.presentation.FGAbelian([0])
        Finitely presented group < a |  >
        sage: groups.presentation.FGAbelian([0,0])
        Finitely presented group < a, b | a^-1*b^-1*a*b >
        sage: groups.presentation.FGAbelian([0,0,0])
        Finitely presented group < a, b, c | a^-1*b^-1*a*b, a^-1*c^-1*a*c, b^-1*c^-1*b*c >

    And various infinite abelian groups::

        sage: groups.presentation.FGAbelian([0,2])
        Finitely presented group < a, b | a^2, a^-1*b^-1*a*b >
        sage: groups.presentation.FGAbelian([0,2,2])
        Finitely presented group < a, b, c | a^2, b^2, a^-1*b^-1*a*b, a^-1*c^-1*a*c, b^-1*c^-1*b*c >

    Outputs are reduced to minimal generators and relations::

        sage: groups.presentation.FGAbelian([3,5,2,7,3])
        Finitely presented group < a, b | a^3, b^210, a^-1*b^-1*a*b >
        sage: groups.presentation.FGAbelian([3,210])
        Finitely presented group < a, b | a^3, b^210, a^-1*b^-1*a*b >

    The trivial group is an acceptable output::

        sage: groups.presentation.FGAbelian([])
        Finitely presented group <  |  >
        sage: groups.presentation.FGAbelian([1])
        Finitely presented group <  |  >
        sage: groups.presentation.FGAbelian([1,1,1,1,1,1,1,1,1,1])
        Finitely presented group <  |  >

    Input list must consist of positive integers::

        sage: groups.presentation.FGAbelian([2,6,3,9,-4])
        Traceback (most recent call last):
        ...
        ValueError: input list must contain nonnegative entries
        sage: groups.presentation.FGAbelian([2,'a',4])
        Traceback (most recent call last):
        ...
        TypeError: unable to convert 'a' to an integer

    TESTS::

        sage: ag = groups.presentation.FGAbelian([2,2])
        sage: ag.as_permutation_group().is_isomorphic(groups.permutation.KleinFour())
        True
        sage: G = groups.presentation.FGAbelian([2,4,8])
        sage: C2 = CyclicPermutationGroup(2)
        sage: C4 = CyclicPermutationGroup(4)
        sage: C8 = CyclicPermutationGroup(8)
        sage: gg = (C2.direct_product(C4)[0]).direct_product(C8)[0]
        sage: gg.is_isomorphic(G.as_permutation_group())
        True
        sage: all(groups.presentation.FGAbelian([i]).as_permutation_group().is_isomorphic(groups.presentation.Cyclic(i).as_permutation_group()) for i in [2..35])
        True
    """
    from sage.groups.free_group import _lexi_gen
    check_ls = [Integer(x) for x in int_list if Integer(x) >= 0]
    if len(check_ls) != len(int_list):
        raise ValueError('input list must contain nonnegative entries')

    col_sp = diagonal_matrix(int_list).column_space()
    invariants = FGP_Module(ZZ**(len(int_list)), col_sp).invariants()
    name_gen = _lexi_gen()
    F = FreeGroup([next(name_gen) for i in invariants])
    ret_rls = [
        F([i + 1])**invariants[i] for i in range(len(invariants))
        if invariants[i] != 0
    ]

    # Build commutator relations
    gen_pairs = [[F.gen(i), F.gen(j)] for i in range(F.ngens() - 1)
                 for j in range(i + 1, F.ngens())]
    ret_rls = ret_rls + [
        x[0]**(-1) * x[1]**(-1) * x[0] * x[1] for x in gen_pairs
    ]
    return FinitelyPresentedGroup(F, tuple(ret_rls))
def FinitelyGeneratedAbelianPresentation(int_list):
    r"""
    Return canonical presentation of finitely generated abelian group.

    INPUT:

    - ``int_list`` -- List of integers defining the group to be returned, the defining list
      is reduced to the invariants of the input list before generating the corresponding
      group.

    OUTPUT:

    Finitely generated abelian group, `\ZZ_{n_1} \times \ZZ_{n_2} \times \cdots \times \ZZ_{n_k}`
    as a finite presentation, where `n_i` forms the invariants of the input list.

    EXAMPLES::

        sage: groups.presentation.FGAbelian([2,2])
        Finitely presented group < a, b | a^2, b^2, a^-1*b^-1*a*b >
        sage: groups.presentation.FGAbelian([2,3])
        Finitely presented group < a | a^6 >
        sage: groups.presentation.FGAbelian([2,4])
        Finitely presented group < a, b | a^2, b^4, a^-1*b^-1*a*b >

    You can create free abelian groups::

        sage: groups.presentation.FGAbelian([0])
        Finitely presented group < a |  >
        sage: groups.presentation.FGAbelian([0,0])
        Finitely presented group < a, b | a^-1*b^-1*a*b >
        sage: groups.presentation.FGAbelian([0,0,0])
        Finitely presented group < a, b, c | a^-1*b^-1*a*b, a^-1*c^-1*a*c, b^-1*c^-1*b*c >

    And various infinite abelian groups::

        sage: groups.presentation.FGAbelian([0,2])
        Finitely presented group < a, b | a^2, a^-1*b^-1*a*b >
        sage: groups.presentation.FGAbelian([0,2,2])
        Finitely presented group < a, b, c | a^2, b^2, a^-1*b^-1*a*b, a^-1*c^-1*a*c, b^-1*c^-1*b*c >

    Outputs are reduced to minimal generators and relations::

        sage: groups.presentation.FGAbelian([3,5,2,7,3])
        Finitely presented group < a, b | a^3, b^210, a^-1*b^-1*a*b >
        sage: groups.presentation.FGAbelian([3,210])
        Finitely presented group < a, b | a^3, b^210, a^-1*b^-1*a*b >

    The trivial group is an acceptable output::

        sage: groups.presentation.FGAbelian([])
        Finitely presented group <  |  >
        sage: groups.presentation.FGAbelian([1])
        Finitely presented group <  |  >
        sage: groups.presentation.FGAbelian([1,1,1,1,1,1,1,1,1,1])
        Finitely presented group <  |  >

    Input list must consist of positive integers::

        sage: groups.presentation.FGAbelian([2,6,3,9,-4])
        Traceback (most recent call last):
        ...
        ValueError: input list must contain nonnegative entries
        sage: groups.presentation.FGAbelian([2,'a',4])
        Traceback (most recent call last):
        ...
        TypeError: unable to convert 'a' to an integer

    TESTS::

        sage: ag = groups.presentation.FGAbelian([2,2])
        sage: ag.as_permutation_group().is_isomorphic(groups.permutation.KleinFour())
        True
        sage: G = groups.presentation.FGAbelian([2,4,8])
        sage: C2 = CyclicPermutationGroup(2)
        sage: C4 = CyclicPermutationGroup(4)
        sage: C8 = CyclicPermutationGroup(8)
        sage: gg = (C2.direct_product(C4)[0]).direct_product(C8)[0]
        sage: gg.is_isomorphic(G.as_permutation_group())
        True
        sage: all(groups.presentation.FGAbelian([i]).as_permutation_group().is_isomorphic(groups.presentation.Cyclic(i).as_permutation_group()) for i in [2..35])
        True
    """
    from sage.groups.free_group import _lexi_gen
    check_ls = [Integer(x) for x in int_list if Integer(x) >= 0]
    if len(check_ls) != len(int_list):
        raise ValueError('input list must contain nonnegative entries')

    col_sp = diagonal_matrix(int_list).column_space()
    invariants = FGP_Module(ZZ**(len(int_list)), col_sp).invariants()
    name_gen = _lexi_gen()
    F = FreeGroup([next(name_gen) for i in invariants])
    ret_rls = [F([i+1])**invariants[i] for i in range(len(invariants)) if invariants[i]!=0]

    # Build commutator relations
    gen_pairs = [[F.gen(i),F.gen(j)] for i in range(F.ngens()-1) for j in range(i+1,F.ngens())]
    ret_rls = ret_rls + [x[0]**(-1)*x[1]**(-1)*x[0]*x[1] for x in gen_pairs]
    return FinitelyPresentedGroup(F, tuple(ret_rls))