Exemple #1
0
def buchberger_improved(F):
    """
    Compute a Groebner basis using an improved version of Buchberger's
    algorithm as presented in [BW1993]_, page 232.

    This variant uses the Gebauer-Moeller Installation to apply
    Buchberger's first and second criterion to avoid useless pairs.

    INPUT:

    - ``F`` -- an ideal in a multivariate polynomial ring

    OUTPUT: a Groebner basis for F

    .. NOTE::

       The verbosity of this function may be controlled with a
       ``set_verbose()`` call. Any value ``>=1`` will result in this
       function printing intermediate Groebner bases.

    EXAMPLES::

        sage: from sage.rings.polynomial.toy_buchberger import buchberger_improved
        sage: R.<x,y,z> = PolynomialRing(QQ)
        sage: set_verbose(0)
        sage: sorted(buchberger_improved(R.ideal([x^4 - y - z, x*y*z - 1])))
        [x*y*z - 1, x^3 - y^2*z - y*z^2, y^3*z^2 + y^2*z^3 - x^2]
    """
    F = inter_reduction(F.gens())

    G = set()
    B = set()

    if get_verbose() >= 1:
        reductions_to_zero = 0

    while F:
        f = min(F)
        F.remove(f)
        G, B = update(G, B, f)

    while B:

        g1, g2 = select(B)
        B.remove((g1, g2))
        h = spol(g1, g2).reduce(G)
        if h != 0:
            G, B = update(G, B, h)

        if get_verbose() >= 1:
            print("(%s, %s) => %s" % (g1, g2, h))
            print("G: %s\n" % G)
            if h == 0:
                reductions_to_zero += 1

    if get_verbose() >= 1:
        print("%d reductions to zero." % reductions_to_zero)

    return Sequence(inter_reduction(G))
Exemple #2
0
def buchberger(F):
    """
    Compute a Groebner basis using the original version of Buchberger's
    algorithm as presented in [BW1993]_, page 214.

    INPUT:

    - ``F`` -- an ideal in a multivariate polynomial ring

    OUTPUT: a Groebner basis for F

    .. NOTE::

       The verbosity of this function may be controlled with a
       ``set_verbose()`` call. Any value >=1 will result in this
       function printing intermediate bases.

    EXAMPLES::

        sage: from sage.rings.polynomial.toy_buchberger import buchberger
        sage: R.<x,y,z> = PolynomialRing(QQ)
        sage: I = R.ideal([x^2 - z - 1, z^2 - y - 1, x*y^2 - x - 1])
        sage: set_verbose(0)
        sage: gb = buchberger(I)
        sage: gb.is_groebner()
        True
        sage: gb.ideal() == I
        True
    """
    G = set(F.gens())
    B = set((g1, g2) for g1 in G for g2 in G if g1 != g2)

    if get_verbose() >= 1:
        reductions_to_zero = 0

    while B:
        g1, g2 = select(B)
        B.remove((g1, g2))

        h = spol(g1, g2).reduce(G)
        if h != 0:
            B = B.union((g, h) for g in G)
            G.add(h)

        if get_verbose() >= 1:
            print("(%s, %s) => %s" % (g1, g2, h))
            print("G: %s\n" % G)
            if h == 0:
                reductions_to_zero += 1

    if get_verbose() >= 1:
        print("%d reductions to zero." % reductions_to_zero)

    return Sequence(G)
Exemple #3
0
    def __call__(self, assumptions=None):
        """
        Run 'command' and collect output.

        INPUT:

        - ``assumptions`` - ignored, accepted for compatibility with
          other solvers (default: ``None``)

        TESTS:

        This class is not meant to be called directly::

            sage: from sage.sat.solvers.dimacs import DIMACS
            sage: fn = tmp_filename()
            sage: solver = DIMACS(filename=fn)
            sage: solver.add_clause( (1, -2 , 3) )
            sage: solver()
            Traceback (most recent call last):
            ...
            ValueError: No SAT solver command selected.
        """
        from sage.misc.verbose import get_verbose
        if assumptions is not None:
            raise NotImplementedError("Assumptions are not supported for DIMACS based solvers.")

        self.write()
        output_filename = None
        self._output = []

        command = self._command.strip()

        if not command:
            raise ValueError("No SAT solver command selected.")


        if "{output}" in command:
            output_filename = tmp_filename()
        command = command.format(input=self._headname, output=output_filename)

        args = shlex.split(command)

        try:
            process = subprocess.Popen(args, stdout=subprocess.PIPE)
        except OSError:
            raise OSError("Could run '%s', perhaps you need to add your SAT solver to $PATH?"%(" ".join(args)))

        try:
            while process.poll() is None:
                for line in iter(process.stdout.readline, b''):
                    if get_verbose() or self._verbosity:
                        print(line)
                        sys.stdout.flush()
                    self._output.append(line.decode('utf-8'))
                sleep(0.1)
            if output_filename:
                self._output.extend(open(output_filename).readlines())
        except BaseException:
            process.kill()
            raise