Exemple #1
0
    def apply(self, g):
        r"""
        Act on this symbol by the element `g \in {\rm GL}_2(\QQ)`.

        INPUT:

        - ``g`` -- a list ``[a,b,c,d]``, corresponding to the 2x2 matrix
          `\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in {\rm GL}_2(\QQ)`.

        OUTPUT:

        - ``FormalSum`` -- a formal sum `\sum_i c_i x_i`, where `c_i` are
          scalars and `x_i` are ModularSymbol objects, such that the sum
          `\sum_i c_i x_i` is the image of this symbol under the action of g.
          No reduction is performed modulo the relations that hold in
          self.space().

        The action of `g` on symbols is by

        .. MATH::

           P(X,Y)\{\alpha, \beta\} \mapsto  P(dX-bY, -cx+aY) \{g(\alpha), g(\beta)\}.

        Note that for us we have `P=X^i Y^{k-2-i}`, which simplifies computation
        of the polynomial part slightly.

        EXAMPLES::

            sage: s = ModularSymbols(11,2).1.modular_symbol_rep()[0][1]; s
            {-1/8, 0}
            sage: a=1;b=2;c=3;d=4; s.apply([a,b,c,d])
            {15/29, 1/2}
            sage: x = -1/8;  (a*x+b)/(c*x+d)
            15/29
            sage: x = 0;  (a*x+b)/(c*x+d)
            1/2
            sage: s = ModularSymbols(11,4).1.modular_symbol_rep()[0][1]; s
            X^2*{-1/6, 0}
            sage: s.apply([a,b,c,d])
            16*X^2*{11/21, 1/2} - 16*X*Y*{11/21, 1/2} + 4*Y^2*{11/21, 1/2}
            sage: P = s.polynomial_part()
            sage: X,Y = P.parent().gens()
            sage: P(d*X-b*Y, -c*X+a*Y)
            16*X^2 - 16*X*Y + 4*Y^2
            sage: x=-1/6; (a*x+b)/(c*x+d)
            11/21
            sage: x=0; (a*x+b)/(c*x+d)
            1/2
            sage: type(s.apply([a,b,c,d]))
            <class 'sage.structure.formal_sum.FormalSum'>
        """
        space = self.__space
        i = self.__i
        k = space.weight()
        a,b,c,d = tuple(g)
        coeffs = apply_to_monomial(i, k-2, d, -b, -c, a)
        g_alpha = self.__alpha.apply(g)
        g_beta = self.__beta.apply(g)
        return formal_sum.FormalSum([(coeffs[j], ModularSymbol(space, j, g_alpha, g_beta)) \
                                     for j in reversed(range(k-1)) if coeffs[j] != 0])
Exemple #2
0
    def apply(self, g):
        r"""
        Act on this symbol by the element `g \in {\rm GL}_2(\QQ)`.

        INPUT:

        - ``g`` -- a list ``[a,b,c,d]``, corresponding to the 2x2 matrix
          `\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in {\rm GL}_2(\QQ)`.

        OUTPUT:

        - ``FormalSum`` -- a formal sum `\sum_i c_i x_i`, where `c_i` are
          scalars and `x_i` are ModularSymbol objects, such that the sum
          `\sum_i c_i x_i` is the image of this symbol under the action of g.
          No reduction is performed modulo the relations that hold in
          self.space().

        The action of `g` on symbols is by

        .. math::

           P(X,Y)\{\alpha, \beta\} \mapsto  P(dX-bY, -cx+aY) \{g(\alpha), g(\beta)\}.

        Note that for us we have `P=X^i Y^{k-2-i}`, which simplifies computation
        of the polynomial part slightly.

        EXAMPLES::

            sage: s = ModularSymbols(11,2).1.modular_symbol_rep()[0][1]; s
            {-1/8, 0}
            sage: a=1;b=2;c=3;d=4; s.apply([a,b,c,d])
            {15/29, 1/2}
            sage: x = -1/8;  (a*x+b)/(c*x+d)
            15/29
            sage: x = 0;  (a*x+b)/(c*x+d)
            1/2
            sage: s = ModularSymbols(11,4).1.modular_symbol_rep()[0][1]; s
            X^2*{-1/6, 0}
            sage: s.apply([a,b,c,d])
            16*X^2*{11/21, 1/2} - 16*X*Y*{11/21, 1/2} + 4*Y^2*{11/21, 1/2}
            sage: P = s.polynomial_part()
            sage: X,Y = P.parent().gens()
            sage: P(d*X-b*Y, -c*X+a*Y)
            16*X^2 - 16*X*Y + 4*Y^2
            sage: x=-1/6; (a*x+b)/(c*x+d)
            11/21
            sage: x=0; (a*x+b)/(c*x+d)
            1/2
            sage: type(s.apply([a,b,c,d]))
            <class 'sage.structure.formal_sum.FormalSum'>
        """
        space = self.__space
        i = self.__i
        k = space.weight()
        a,b,c,d = tuple(g)
        coeffs = apply_to_monomial(i, k-2, d, -b, -c, a)
        g_alpha = self.__alpha.apply(g)
        g_beta = self.__beta.apply(g)
        return formal_sum.FormalSum([(coeffs[j], ModularSymbol(space, j, g_alpha, g_beta)) \
                                     for j in reversed(range(k-1)) if coeffs[j] != 0])
Exemple #3
0
    def __manin_symbol_rep(self, alpha):
        """
        Return Manin symbol representation of X^i*Y^(k-2-i){0,alpha}.

        EXAMPLES::

            sage: s = ModularSymbols(11,2).1.modular_symbol_rep()[0][1]; s
            {-1/8, 0}
            sage: s.manin_symbol_rep()          # indirect doctest
            -(1,1) - (-8,1)
            sage: M = ModularSymbols(11,2)
            sage: s = M( (1,9) ); s
            (1,9)
            sage: t = s.modular_symbol_rep()[0][1].manin_symbol_rep(); t
            -(1,1) - (-9,1)
            sage: M(t)
            (1,9)
        """
        space = self.__space
        i = self.__i
        k = space.weight()
        v = [(0,1), (1,0)]
        if not alpha.is_infinity():
            cf = alpha._rational_().continued_fraction()
            v.extend((cf.p(k),cf.q(k)) for k in range(len(cf)))
        sign = 1
        z = formal_sum.FormalSum(0)
        for j in range(1,len(v)):
            c = sign*v[j][1]
            d = v[j-1][1]
            coeffs = apply_to_monomial(i, k-2, sign*v[j][0], v[j-1][0],
                                       sign*v[j][1], v[j-1][1])
            w = [(coeffs[j], ManinSymbol(space, (j, c, d)))
                 for j in range(k-1) if coeffs[j] != 0]
            z += formal_sum.FormalSum(w)
            sign *= -1
        return z
Exemple #4
0
    def __manin_symbol_rep(self, alpha):
        """
        Return Manin symbol representation of X^i*Y^(k-2-i){0,alpha}.

        EXAMPLES::

            sage: s = ModularSymbols(11,2).1.modular_symbol_rep()[0][1]; s
            {-1/8, 0}
            sage: s.manin_symbol_rep()          # indirect doctest
            -(-8,1) - (1,1)
            sage: M = ModularSymbols(11,2)
            sage: s = M( (1,9) ); s
            (1,9)
            sage: t = s.modular_symbol_rep()[0][1].manin_symbol_rep(); t
            -(-9,1) - (1,1)
            sage: M(t)
            (1,9)
        """
        space = self.__space
        i = self.__i
        k = space.weight()
        v = [(0,1), (1,0)]
        if not alpha.is_infinity():
            cf = alpha._rational_().continued_fraction()
            v.extend((cf.p(k),cf.q(k)) for k in range(len(cf)))
        sign = 1
        z = formal_sum.FormalSum(0)
        for j in range(1,len(v)):
            c = sign*v[j][1]
            d = v[j-1][1]
            coeffs = apply_to_monomial(i, k-2, sign*v[j][0], v[j-1][0],
                                       sign*v[j][1], v[j-1][1])
            w = [(coeffs[j], ManinSymbol(space, (j, c, d)))
                 for j in range(k-1) if coeffs[j] != 0]
            z += formal_sum.FormalSum(w)
            sign *= -1
        return z