def ambient_vector_space(self): """ Return the ambient vector space. .. SEEALSO:: :meth:`ambient_module` OUTPUT: The vector space (over the fraction field of the base ring) where the linear expressions live. EXAMPLES:: sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: L.ambient_vector_space() Vector space of dimension 3 over Rational Field sage: M = LinearExpressionModule(ZZ, ('r', 's')) sage: M.ambient_module() Ambient free module of rank 2 over the principal ideal domain Integer Ring sage: M.ambient_vector_space() Vector space of dimension 2 over Rational Field """ from sage.modules.all import VectorSpace field = self.base_ring().fraction_field() return VectorSpace(field, self.ngens())
def fiber(self): r""" Return the generic fiber of the vector bundle. OUTPUT: A vector space over :meth:`base_ring`. EXAMPLES:: sage: T_P2 = toric_varieties.P2().sheaves.tangent_bundle() sage: T_P2.fiber() Vector space of dimension 2 over Rational Field """ from sage.modules.all import VectorSpace return VectorSpace(self.base_ring(), self.rank())
def vertices(self): """ EXAMPLES:: sage: P = polymake.convex_hull([[1,0,0,0], [1,0,0,1], [1,0,1,0], [1,0,1,1], [1,1,0,0], [1,1,0,1], [1,1,1,0], [1,1,1,1]]) # optional - polymake sage: P.vertices() # optional - polymake [(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)] """ try: return self.__vertices except AttributeError: pass s = self.cmd('VERTICES') s = s.rstrip().split('\n')[1:] if len(s) == 0: ans = Sequence([], immutable=True) else: n = len(s[0].split()) V = VectorSpace(QQ, n) ans = Sequence((V(x.split()) for x in s), immutable=True) self.__vertices = ans return ans
def facets(self): """ EXAMPLES:: sage: P = polymake.convex_hull([[1,0,0,0], [1,0,0,1], [1,0,1,0], [1,0,1,1], [1,1,0,0], [1,1,0,1], [1,1,1,0], [1,1,1,1]]) # optional: needs polymake sage: P.facets() # optional [(0, 0, 0, 1), (0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, -1), (1, 0, -1, 0), (1, -1, 0, 0)] """ try: return self.__facets except AttributeError: pass s = self.cmd('FACETS') s = s.rstrip().split('\n')[1:] if len(s) == 0: ans = Sequence([], immutable=True) else: n = len(s[0].split()) V = VectorSpace(QQ, n) ans = Sequence((V(x.split()) for x in s), immutable=True) self.__facets = ans return ans
def right_angle_triangle(w, h): r""" TESTS:: sage: from flatsurf import * sage: R = similarity_surfaces.right_angle_triangle(2, 3) sage: R ConeSurface built from 2 polygons sage: TestSuite(R).run() """ from sage.modules.free_module_element import vector F = Sequence([w, h]).universe() if not F.is_field(): F = F.fraction_field() V = VectorSpace(F, 2) P = ConvexPolygons(F) s = Surface_list(base_ring=F) s.add_polygon(P([V((w, 0)), V((-w, h)), V((0, -h))])) # gets label 0 s.add_polygon(P([V((0, h)), V((-w, -h)), V((w, 0))])) # gets label 1 s.change_polygon_gluings(0, [(1, 2), (1, 1), (1, 0)]) s.set_immutable() return ConeSurface(s)
def __call__(self, program, complex, subcomplex=None, **kwds): """ Call a CHomP program to compute the homology of a chain complex, simplicial complex, or cubical complex. See :class:`CHomP` for full documentation. EXAMPLES:: sage: from sage.interfaces.chomp import CHomP sage: T = cubical_complexes.Torus() sage: CHomP()('homcubes', T) # indirect doctest, optional - CHomP {0: 0, 1: Z x Z, 2: Z} """ from sage.misc.temporary_file import tmp_filename from sage.homology.all import CubicalComplex, cubical_complexes from sage.homology.all import SimplicialComplex, Simplex from sage.homology.chain_complex import HomologyGroup from subprocess import Popen, PIPE from sage.rings.all import QQ, ZZ from sage.modules.all import VectorSpace, vector from sage.combinat.free_module import CombinatorialFreeModule if not have_chomp(program): raise OSError("Program %s not found" % program) verbose = kwds.get('verbose', False) generators = kwds.get('generators', False) extra_opts = kwds.get('extra_opts', '') base_ring = kwds.get('base_ring', ZZ) if extra_opts: extra_opts = extra_opts.split() else: extra_opts = [] # type of complex: cubical = False simplicial = False chain = False # CHomP seems to have problems with cubical complexes if the # first interval in the first cube defining the complex is # degenerate. So replace the complex X with [0,1] x X. if isinstance(complex, CubicalComplex): cubical = True edge = cubical_complexes.Cube(1) original_complex = complex complex = edge.product(complex) if verbose: print("Cubical complex") elif isinstance(complex, SimplicialComplex): simplicial = True if verbose: print("Simplicial complex") else: chain = True base_ring = kwds.get('base_ring', complex.base_ring()) if verbose: print("Chain complex over %s" % base_ring) if base_ring == QQ: raise ValueError( "CHomP doesn't compute over the rationals, only over Z or F_p." ) if base_ring.is_prime_field(): p = base_ring.characteristic() extra_opts.append('-p%s' % p) mod_p = True else: mod_p = False # # complex # try: data = complex._chomp_repr_() except AttributeError: raise AttributeError( "Complex cannot be converted to use with CHomP.") datafile = tmp_filename() with open(datafile, 'w') as f: f.write(data) # # subcomplex # if subcomplex is None: if cubical: subcomplex = CubicalComplex([complex.n_cells(0)[0]]) elif simplicial: m = re.search(r'\(([^,]*),', data) v = int(m.group(1)) subcomplex = SimplicialComplex([[v]]) else: # replace subcomplex with [0,1] x subcomplex. if cubical: subcomplex = edge.product(subcomplex) # # generators # if generators: genfile = tmp_filename() extra_opts.append('-g%s' % genfile) # # call program # if subcomplex is not None: try: sub = subcomplex._chomp_repr_() except AttributeError: raise AttributeError( "Subcomplex cannot be converted to use with CHomP.") subfile = tmp_filename() with open(subfile, 'w') as f: f.write(sub) else: subfile = '' if verbose: print("Popen called with arguments", end="") print([program, datafile, subfile] + extra_opts) print("") print("CHomP output:") print("") # output = Popen([program, datafile, subfile, extra_opts], cmd = [program, datafile] if subfile: cmd.append(subfile) if extra_opts: cmd.extend(extra_opts) output = Popen(cmd, stdout=PIPE).communicate()[0] if verbose: print(output) print("End of CHomP output") print("") if generators: with open(genfile, 'r') as f: gens = f.read() if verbose: print("Generators:") print(gens) # # process output # if output.find('ERROR') != -1: raise RuntimeError('error inside CHomP') # output contains substrings of one of the forms # "H_1 = Z", "H_1 = Z_2 + Z", "H_1 = Z_2 + Z^2", # "H_1 = Z + Z_2 + Z" if output.find('trivial') != -1: if mod_p: return {0: VectorSpace(base_ring, 0)} else: return {0: HomologyGroup(0, ZZ)} d = {} h = re.compile("^H_([0-9]*) = (.*)$", re.M) tors = re.compile("Z_([0-9]*)") # # homology groups # for m in h.finditer(output): if verbose: print(m.groups()) # dim is the dimension of the homology group dim = int(m.group(1)) # hom_str is the right side of the equation "H_n = Z^r + Z_k + ..." hom_str = m.group(2) # need to read off number of summands and their invariants if hom_str.find("0") == 0: if mod_p: hom = VectorSpace(base_ring, 0) else: hom = HomologyGroup(0, ZZ) else: rk = 0 if hom_str.find("^") != -1: rk_srch = re.search(r'\^([0-9]*)\s?', hom_str) rk = int(rk_srch.group(1)) rk += len(re.findall(r"(Z$)|(Z\s)", hom_str)) if mod_p: rk = rk if rk != 0 else 1 if verbose: print("dimension = %s, rank of homology = %s" % (dim, rk)) hom = VectorSpace(base_ring, rk) else: n = rk invts = [] for t in tors.finditer(hom_str): n += 1 invts.append(int(t.group(1))) for i in range(rk): invts.append(0) if verbose: print( "dimension = %s, number of factors = %s, invariants = %s" % (dim, n, invts)) hom = HomologyGroup(n, ZZ, invts) # # generators # if generators: if cubical: g = process_generators_cubical(gens, dim) if verbose: print("raw generators: %s" % g) if g: module = CombinatorialFreeModule( base_ring, original_complex.n_cells(dim), prefix="", bracket=True) basis = module.basis() output = [] for x in g: v = module(0) for term in x: v += term[0] * basis[term[1]] output.append(v) g = output elif simplicial: g = process_generators_simplicial(gens, dim, complex) if verbose: print("raw generators: %s" % gens) if g: module = CombinatorialFreeModule(base_ring, complex.n_cells(dim), prefix="", bracket=False) basis = module.basis() output = [] for x in g: v = module(0) for term in x: if complex._is_numeric(): v += term[0] * basis[term[1]] else: translate = complex._translation_from_numeric( ) simplex = Simplex( [translate[a] for a in term[1]]) v += term[0] * basis[simplex] output.append(v) g = output elif chain: g = process_generators_chain(gens, dim, base_ring) if verbose: print("raw generators: %s" % gens) if g: if not mod_p: # sort generators to match up with corresponding invariant g = [ _[1] for _ in sorted(zip(invts, g), key=lambda x: x[0]) ] d[dim] = (hom, g) else: d[dim] = hom else: d[dim] = hom if chain: new_d = {} diff = complex.differential() if len(diff) == 0: return {} bottom = min(diff) top = max(diff) for dim in d: if complex._degree_of_differential == -1: # chain complex new_dim = bottom + dim else: # cochain complex new_dim = top - dim if isinstance(d[dim], tuple): # generators included. group = d[dim][0] gens = d[dim][1] new_gens = [] dimension = complex.differential(new_dim).ncols() # make sure that each vector is embedded in the # correct ambient space: pad with a zero if # necessary. for v in gens: v_dict = v.dict() if dimension - 1 not in v.dict(): v_dict[dimension - 1] = 0 new_gens.append(vector(base_ring, v_dict)) else: new_gens.append(v) new_d[new_dim] = (group, new_gens) else: new_d[new_dim] = d[dim] d = new_d return d
def homology(self, dim=None, **kwds): r""" The reduced homology of this cell complex. :param dim: If None, then return the homology in every dimension. If ``dim`` is an integer or list, return the homology in the given dimensions. (Actually, if ``dim`` is a list, return the homology in the range from ``min(dim)`` to ``max(dim)``.) :type dim: integer or list of integers or None; optional, default None :param base_ring: commutative ring, must be ZZ or a field. :type base_ring: optional, default ZZ :param subcomplex: a subcomplex of this simplicial complex. Compute homology relative to this subcomplex. :type subcomplex: optional, default empty :param generators: If ``True``, return generators for the homology groups along with the groups. NOTE: Since :trac:`6100`, the result may not be what you expect when not using CHomP since its return is in terms of the chain complex. :type generators: boolean; optional, default False :param cohomology: If True, compute cohomology rather than homology. :type cohomology: boolean; optional, default False :param algorithm: The options are 'auto', 'dhsw', 'pari' or 'no_chomp'. See below for a description of what they mean. :type algorithm: string; optional, default 'auto' :param verbose: If True, print some messages as the homology is computed. :type verbose: boolean; optional, default False .. note:: The keyword arguments to this function get passed on to :meth:``chain_complex`` and its homology. ALGORITHM: If ``algorithm`` is set to 'auto' (the default), then use CHomP if available. (CHomP is available at the web page http://chomp.rutgers.edu/. It is also an experimental package for Sage.) CHomP computes homology, not cohomology, and only works over the integers or finite prime fields. Therefore if any of these conditions fails, or if CHomP is not present, or if ``algorithm`` is set to 'no_chomp', go to plan B: if ``self`` has a ``_homology`` method -- each simplicial complex has this, for example -- then call that. Such a method implements specialized algorithms for the particular type of cell complex. Otherwise, move on to plan C: compute the chain complex of ``self`` and compute its homology groups. To do this: over a field, just compute ranks and nullities, thus obtaining dimensions of the homology groups as vector spaces. Over the integers, compute Smith normal form of the boundary matrices defining the chain complex according to the value of ``algorithm``. If ``algorithm`` is 'auto' or 'no_chomp', then for each relatively small matrix, use the standard Sage method, which calls the Pari package. For any large matrix, reduce it using the Dumas, Heckenbach, Saunders, and Welker elimination algorithm: see :func:`sage.homology.chain_complex.dhsw_snf` for details. Finally, ``algorithm`` may also be 'pari' or 'dhsw', which forces the named algorithm to be used regardless of the size of the matrices and regardless of whether CHomP is available. As of this writing, CHomP is by far the fastest option, followed by the 'auto' or 'no_chomp' setting of using the Dumas, Heckenbach, Saunders, and Welker elimination algorithm for large matrices and Pari for small ones. EXAMPLES:: sage: P = delta_complexes.RealProjectivePlane() sage: P.homology() {0: 0, 1: C2, 2: 0} sage: P.homology(base_ring=GF(2)) {0: Vector space of dimension 0 over Finite Field of size 2, 1: Vector space of dimension 1 over Finite Field of size 2, 2: Vector space of dimension 1 over Finite Field of size 2} sage: S7 = delta_complexes.Sphere(7) sage: S7.homology(7) Z sage: cubical_complexes.KleinBottle().homology(1, base_ring=GF(2)) Vector space of dimension 2 over Finite Field of size 2 If CHomP is installed, Sage can compute generators of homology groups:: sage: S2 = simplicial_complexes.Sphere(2) sage: S2.homology(dim=2, generators=True, base_ring=GF(2)) # optional - CHomP (Vector space of dimension 1 over Finite Field of size 2, [(0, 1, 2) + (0, 1, 3) + (0, 2, 3) + (1, 2, 3)]) When generators are computed, Sage returns a pair for each dimension: the group and the list of generators. For simplicial complexes, each generator is represented as a linear combination of simplices, as above, and for cubical complexes, each generator is a linear combination of cubes:: sage: S2_cub = cubical_complexes.Sphere(2) sage: S2_cub.homology(dim=2, generators=True) # optional - CHomP (Z, [-[[0,1] x [0,1] x [0,0]] + [[0,1] x [0,1] x [1,1]] - [[0,0] x [0,1] x [0,1]] - [[0,1] x [1,1] x [0,1]] + [[0,1] x [0,0] x [0,1]] + [[1,1] x [0,1] x [0,1]]]) """ from sage.interfaces.chomp import have_chomp, homcubes, homsimpl from sage.homology.cubical_complex import CubicalComplex from sage.homology.simplicial_complex import SimplicialComplex from sage.modules.all import VectorSpace from sage.homology.chain_complex import HomologyGroup base_ring = kwds.get('base_ring', ZZ) cohomology = kwds.get('cohomology', False) subcomplex = kwds.get('subcomplex', None) verbose = kwds.get('verbose', False) algorithm = kwds.get('algorithm', 'auto') if dim is not None: if isinstance(dim, (list, tuple)): low = min(dim) - 1 high = max(dim) + 2 else: low = dim - 1 high = dim + 2 dims = range(low, high) else: dims = None # try to use CHomP if computing homology (not cohomology) and # working over Z or F_p, p a prime. if (algorithm == 'auto' and cohomology is False and (base_ring == ZZ or (base_ring.is_prime_field() and base_ring != QQ))): # homcubes, homsimpl seems fastest if all of homology is computed. H = None if isinstance(self, CubicalComplex): if have_chomp('homcubes'): if 'subcomplex' in kwds: del kwds['subcomplex'] H = homcubes(self, subcomplex, **kwds) elif isinstance(self, SimplicialComplex): if have_chomp('homsimpl'): if 'subcomplex' in kwds: del kwds['subcomplex'] H = homsimpl(self, subcomplex, **kwds) # now pick off the requested dimensions if H: answer = {} if not dims: for d in range(self.dimension() + 1): if base_ring == ZZ: answer[d] = H.get(d, HomologyGroup(0)) else: answer[d] = H.get(d, VectorSpace(base_ring, 0)) else: for d in dims: if base_ring == ZZ: answer[d] = H.get(d, HomologyGroup(0)) else: answer[d] = H.get(d, VectorSpace(base_ring, 0)) if dim is not None: if not isinstance(dim, (list, tuple)): if base_ring == ZZ: answer = answer.get(dim, HomologyGroup(0)) else: answer = answer.get(dim, VectorSpace(base_ring, 0)) return answer # Derived classes can implement specialized algorithms using a # _homology_ method. See SimplicialComplex for one example. if hasattr(self, '_homology_'): return self._homology_(dim, **kwds) C = self.chain_complex(cochain=cohomology, augmented=True, dimensions=dims, **kwds) if 'subcomplex' in kwds: del kwds['subcomplex'] answer = C.homology(**kwds) if isinstance(answer, dict): if cohomology: too_big = self.dimension() + 1 if (not ((isinstance(dim, (list, tuple)) and too_big in dim) or too_big == dim) and too_big in answer): del answer[too_big] if -2 in answer: del answer[-2] if -1 in answer: del answer[-1] for d in range(self.dimension() + 1): if d not in answer: if base_ring == ZZ: answer[d] = HomologyGroup(0) else: answer[d] = VectorSpace(base_ring, 0) if dim is not None: if isinstance(dim, (list, tuple)): temp = {} for n in dim: temp[n] = answer[n] answer = temp else: # just a single dimension if base_ring == ZZ: answer = answer.get(dim, HomologyGroup(0)) else: answer = answer.get(dim, VectorSpace(base_ring, 0)) return answer
def from_flipper(h): r""" Build a (half-)translation surface from a flipper pseudo-Anosov. EXAMPLES:: sage: from flatsurf import * sage: import flipper # optional - flipper A torus example:: sage: t1 = (0r,1r,2r) # optional - flipper sage: t2 = (~0r,~1r,~2r) # optional - flipper sage: T = flipper.create_triangulation([t1,t2]) # optional - flipper sage: L1 = T.lamination([1r,0r,1r]) # optional - flipper sage: L2 = T.lamination([0r,1r,1r]) # optional - flipper sage: h1 = L1.encode_twist() # optional - flipper sage: h2 = L2.encode_twist() # optional - flipper sage: h = h1*h2^(-1r) # optional - flipper sage: f = h.flat_structure() # optional - flipper sage: ts = translation_surfaces.from_flipper(h) # optional - flipper sage: ts # optional - flipper HalfTranslationSurface built from 2 polygons sage: TestSuite(ts).run() # optional - flipper A non-orientable example:: sage: T = flipper.load('SB_4') # optional - flipper sage: h = T.mapping_class('s_0S_1s_2S_3s_1S_2') # optional - flipper sage: h.is_pseudo_anosov() # optional - flipper True sage: S = translation_surfaces.from_flipper(h) # optional - flipper sage: TestSuite(S).run() # optional - flipper sage: S.num_polygons() # optional - flipper 4 sage: from flatsurf.geometry.similarity_surface_generators import flipper_nf_element_to_sage sage: a = flipper_nf_element_to_sage(h.dilatation()) # optional - flipper """ from .surface import surface_list_from_polygons_and_gluings f = h.flat_structure() x = next(itervalues(f.edge_vectors)).x K = flipper_nf_to_sage(x.field) V = VectorSpace(K, 2) edge_vectors = { i: V((flipper_nf_element_to_sage(e.x, K), flipper_nf_element_to_sage(e.y, K))) for i, e in iteritems(f.edge_vectors) } to_polygon_number = { k: (i, j) for i, t in enumerate(f.triangulation) for j, k in enumerate(t) } C = ConvexPolygons(K) polys = [] adjacencies = {} for i, t in enumerate(f.triangulation): for j, k in enumerate(t): adjacencies[(i, j)] = to_polygon_number[~k] try: poly = C([edge_vectors[i] for i in tuple(t)]) except ValueError: raise ValueError("t = {}, edges = {}".format( t, [edge_vectors[i].n(digits=6) for i in t])) polys.append(poly) return HalfTranslationSurface( surface_list_from_polygons_and_gluings(polys, adjacencies))
def arnoux_yoccoz(genus): r""" Construct the Arnoux-Yoccoz surface of genus 3 or greater. This presentation of the surface follows Section 2.3 of Joshua P. Bowman's paper "The Complete Family of Arnoux-Yoccoz Surfaces." EXAMPLES:: sage: from flatsurf import * sage: s = translation_surfaces.arnoux_yoccoz(4) sage: TestSuite(s).run() sage: s.is_delaunay_decomposed() True sage: s = s.canonicalize() sage: field=s.base_ring() sage: a = field.gen() sage: from sage.matrix.constructor import Matrix sage: m = Matrix([[a,0],[0,~a]]) sage: ss = m*s sage: ss = ss.canonicalize() sage: s.cmp(ss) == 0 True The Arnoux-Yoccoz pseudo-Anosov are known to have (minimal) invariant foliations with SAF=0:: sage: S3 = translation_surfaces.arnoux_yoccoz(3) sage: Jxx, Jyy, Jxy = S3.j_invariant() sage: Jxx.is_zero() and Jyy.is_zero() True sage: Jxy [ 0 2 0] [ 2 -2 0] [ 0 0 2] sage: S4 = translation_surfaces.arnoux_yoccoz(4) sage: Jxx, Jyy, Jxy = S4.j_invariant() sage: Jxx.is_zero() and Jyy.is_zero() True sage: Jxy [ 0 2 0 0] [ 2 -2 0 0] [ 0 0 2 2] [ 0 0 2 0] """ g = ZZ(genus) assert g >= 3 x = polygen(AA) p = sum([x**i for i in range(1, g + 1)]) - 1 cp = AA.common_polynomial(p) alpha_AA = AA.polynomial_root(cp, RIF(1 / 2, 1)) field = NumberField(alpha_AA.minpoly(), 'alpha', embedding=alpha_AA) a = field.gen() V = VectorSpace(field, 2) p = [None for i in range(g + 1)] q = [None for i in range(g + 1)] p[0] = V(((1 - a**g) / 2, a**2 / (1 - a))) q[0] = V((-a**g / 2, a)) p[1] = V((-(a**(g - 1) + a**g) / 2, (a - a**2 + a**3) / (1 - a))) p[g] = V((1 + (a - a**g) / 2, (3 * a - 1 - a**2) / (1 - a))) for i in range(2, g): p[i] = V(((a - a**i) / (1 - a), a / (1 - a))) for i in range(1, g + 1): q[i] = V(((2 * a - a**i - a**(i + 1)) / (2 * (1 - a)), (a - a**(g - i + 2)) / (1 - a))) P = ConvexPolygons(field) s = Surface_list(field) T = [None] * (2 * g + 1) Tp = [None] * (2 * g + 1) from sage.matrix.constructor import Matrix m = Matrix([[1, 0], [0, -1]]) for i in range(1, g + 1): # T_i is (P_0,Q_i,Q_{i-1}) T[i] = s.add_polygon( P(edges=[q[i] - p[0], q[i - 1] - q[i], p[0] - q[i - 1]])) # T_{g+i} is (P_i,Q_{i-1},Q_{i}) T[g + i] = s.add_polygon( P(edges=[q[i - 1] - p[i], q[i] - q[i - 1], p[i] - q[i]])) # T'_i is (P'_0,Q'_{i-1},Q'_i) Tp[i] = s.add_polygon(m * s.polygon(T[i])) # T'_{g+i} is (P'_i,Q'_i, Q'_{i-1}) Tp[g + i] = s.add_polygon(m * s.polygon(T[g + i])) for i in range(1, g): s.change_edge_gluing(T[i], 0, T[i + 1], 2) s.change_edge_gluing(Tp[i], 2, Tp[i + 1], 0) for i in range(1, g + 1): s.change_edge_gluing(T[i], 1, T[g + i], 1) s.change_edge_gluing(Tp[i], 1, Tp[g + i], 1) #P 0 Q 0 is paired with P' 0 Q' 0, ... s.change_edge_gluing(T[1], 2, Tp[g], 2) s.change_edge_gluing(Tp[1], 0, T[g], 0) # P1Q1 is paired with P'_g Q_{g-1} s.change_edge_gluing(T[g + 1], 2, Tp[2 * g], 2) s.change_edge_gluing(Tp[g + 1], 0, T[2 * g], 0) # P1Q0 is paired with P_{g-1} Q_{g-1} s.change_edge_gluing(T[g + 1], 0, T[2 * g - 1], 2) s.change_edge_gluing(Tp[g + 1], 2, Tp[2 * g - 1], 0) # PgQg is paired with Q1P2 s.change_edge_gluing(T[2 * g], 2, T[g + 2], 0) s.change_edge_gluing(Tp[2 * g], 0, Tp[g + 2], 2) for i in range(2, g - 1): # PiQi is paired with Q'_i P'_{i+1} s.change_edge_gluing(T[g + i], 2, Tp[g + i + 1], 2) s.change_edge_gluing(Tp[g + i], 0, T[g + i + 1], 0) s.set_immutable() return TranslationSurface(s)