def __init__(self, parent, im_gen, base_morphism): """ EXAMPLES:: sage: K.<x> = FunctionField(QQ) sage: f = K.hom(1/x); f Morphism of function fields defined by x |--> 1/x sage: isinstance(f, sage.rings.function_field.maps.FunctionFieldMorphism) True """ RingHomomorphism.__init__(self, parent) self._im_gen = im_gen self._base_morphism = base_morphism
def __init__(self, parent, im_gen, base_morphism): """ EXAMPLES:: sage: K.<x> = FunctionField(QQ) sage: f = K.hom(1/x); f Function Field endomorphism of Rational function field in x over Rational Field Defn: x |--> 1/x sage: isinstance(f, sage.rings.function_field.maps.FunctionFieldMorphism) True """ RingHomomorphism.__init__(self, parent) self._im_gen = im_gen self._base_morphism = base_morphism
def __init__(self, parent, im_gen, base_morphism): """ Initialize. EXAMPLES:: sage: K.<x> = FunctionField(QQ) sage: f = K.hom(1/x); f Function Field endomorphism of Rational function field in x over Rational Field Defn: x |--> 1/x sage: TestSuite(f).run(skip="_test_category") """ RingHomomorphism.__init__(self, parent) self._im_gen = im_gen self._base_morphism = base_morphism
def __init__(self, domain, codomain, ringembed): r""" Initialize this morphism. TESTS:: sage: k.<a> = GF(5^3) sage: S.<x> = SkewPolynomialRing(k, k.frobenius_endomorphism()) sage: K = S.fraction_field() sage: Z = K.center() sage: iota = K.coerce_map_from(Z) sage: TestSuite(iota).run(skip=['_test_category']) """ RingHomomorphism.__init__(self, Hom(domain, codomain)) self._codomain = codomain self._ringembed = ringembed self._section = SectionOreFunctionCenterInjection(self)
def __init__(self, domain, codomain, embed, order): r""" Initialize this morphism. EXAMPLES:: sage: k.<a> = GF(5^3) sage: S.<x> = SkewPolynomialRing(k, k.frobenius_endomorphism()) sage: Z = S.center() sage: S.convert_map_from(Z) # indirect doctest Embedding of the center of Ore Polynomial Ring in x over Finite Field in a of size 5^3 twisted by a |--> a^5 into this ring """ RingHomomorphism.__init__(self, Hom(domain, codomain)) self._embed = embed self._order = order self._codomain = codomain self._section = SectionSkewPolynomialCenterInjection(self)
def __init__(self, parent, abs_hom): r""" EXAMPLES:: sage: K.<a, b> = NumberField( [x^3 + 2, x^2 + x + 1] ) sage: f = K.hom(-a*b - a, K); f Relative number field endomorphism of Number Field in a with defining polynomial x^3 + 2 over its base field Defn: a |--> (-b - 1)*a b |--> b sage: type(f) <class 'sage.rings.number_field.homset.RelativeNumberFieldHomset_with_category.element_class'> """ RingHomomorphism.__init__(self, parent) self._abs_hom = abs_hom K = abs_hom.domain() from_K, to_K = K.structure() self._from_K = from_K self._to_K = to_K
def __init__(self, parent, abs_hom): r""" EXAMPLES:: sage: K.<a, b> = NumberField( [x^3 + 2, x^2 + x + 1] ) sage: f = K.hom(-a*b - a, K); f Relative number field endomorphism of Number Field in a with defining polynomial x^3 + 2 over its base field Defn: a |--> (-b - 1)*a b |--> b sage: type(f) <class 'sage.rings.number_field.morphism.RelativeNumberFieldHomomorphism_from_abs'> """ RingHomomorphism.__init__(self, parent) self.__abs_hom = abs_hom K = abs_hom.domain() from_K, to_K = K.structure() self.__K = K self.__from_K = from_K self.__to_K = to_K