Exemple #1
0
def q_int(n, q=None):
    r"""
    Return the `q`-analog of the nonnegative integer `n`.

    The `q`-analog of the nonnegative integer `n` is given by

    .. MATH::

        [n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}
        = q^{n-1} + q^{n-3} + \cdots + q^{-n+3} + q^{-n+1}.

    INPUT:

    - ``n`` -- the nonnegative integer `n` defined above
    - ``q`` -- (default: `q \in \ZZ[q, q^{-1}]`) the parameter `q`
      (should be invertible)

    If ``q`` is unspecified, then it defaults to using the generator `q`
    for a Laurent polynomial ring over the integers.

    .. NOTE::

        This is not the "usual" `q`-analog of `n` (or `q`-integer) but
        a variant useful for quantum groups. For the version used in
        combinatorics, see :mod:`sage.combinat.q_analogues`.

    EXAMPLES::

        sage: from sage.algebras.quantum_groups.q_numbers import q_int
        sage: q_int(2)
        q^-1 + q
        sage: q_int(3)
        q^-2 + 1 + q^2
        sage: q_int(5)
        q^-4 + q^-2 + 1 + q^2 + q^4
        sage: q_int(5, 1)
        5

    TESTS::

        sage: from sage.algebras.quantum_groups.q_numbers import q_int
        sage: q_int(1)
        1
        sage: q_int(0)
        0
    """
    if q is None:
        R = LaurentPolynomialRing(ZZ, 'q')
        q = R.gen()
    else:
        R = q.parent()
    if n == 0:
        return R.zero()
    return R.sum(q**(n - 2 * i - 1) for i in range(n))
Exemple #2
0
def q_int(n, q=None):
    r"""
    Return the `q`-analog of the nonnegative integer `n`.

    The `q`-analog of the nonnegative integer `n` is given by

    .. MATH::

        [n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}
        = q^{n-1} + q^{n-3} + \cdots + q^{-n+3} + q^{-n+1}.

    INPUT:

    - ``n`` -- the nonnegative integer `n` defined above
    - ``q`` -- (default: `q \in \ZZ[q, q^{-1}]`) the parameter `q`
      (should be invertible)

    If ``q`` is unspecified, then it defaults to using the generator `q`
    for a Laurent polynomial ring over the integers.

    .. NOTE::

        This is not the "usual" `q`-analog of `n` (or `q`-integer) but
        a variant useful for quantum groups. For the version used in
        combinatorics, see :mod:`sage.combinat.q_analogues`.

    EXAMPLES::

        sage: from sage.algebras.quantum_groups.q_numbers import q_int
        sage: q_int(2)
        q^-1 + q
        sage: q_int(3)
        q^-2 + 1 + q^2
        sage: q_int(5)
        q^-4 + q^-2 + 1 + q^2 + q^4
        sage: q_int(5, 1)
        5

    TESTS::

        sage: from sage.algebras.quantum_groups.q_numbers import q_int
        sage: q_int(1)
        1
        sage: q_int(0)
        0
    """
    if q is None:
        R = LaurentPolynomialRing(ZZ, 'q')
        q = R.gen()
    else:
        R = q.parent()
    if n == 0:
        return R.zero()
    return R.sum(q**(n - 2 * i - 1) for i in range(n))
Exemple #3
0
    def alexander_polynomial(self, var='t', normalized=True):
        r"""
        Return the Alexander polynomial of the closure of the braid.

        INPUT:

        - ``var`` -- string (default: ``'t'``); the name of the
          variable in the entries of the matrix
        - ``normalized`` -- boolean (default: ``True``); whether to
          return the normalized Alexander polynomial

        OUTPUT:

        The Alexander polynomial of the braid closure of the braid.

        This is computed using the reduced Burau representation. The
        unnormalized Alexander polynomial is a Laurent polynomial,
        which is only well-defined up to multiplication by plus or
        minus times a power of `t`.

        We normalize the polynomial by dividing by the largest power
        of `t` and then if the resulting constant coefficient
        is negative, we multiply by `-1`.

        EXAMPLES:

        We first construct the trefoil::

            sage: B = BraidGroup(3)
            sage: b = B([1,2,1,2])
            sage: b.alexander_polynomial(normalized=False)
            1 - t + t^2
            sage: b.alexander_polynomial()
            t^-2 - t^-1 + 1

        Next we construct the figure 8 knot::

            sage: b = B([-1,2,-1,2])
            sage: b.alexander_polynomial(normalized=False)
            -t^-2 + 3*t^-1 - 1
            sage: b.alexander_polynomial()
            t^-2 - 3*t^-1 + 1

        Our last example is the Kinoshita-Terasaka knot::

            sage: B = BraidGroup(4)
            sage: b = B([1,1,1,3,3,2,-3,-1,-1,2,-1,-3,-2])
            sage: b.alexander_polynomial(normalized=False)
            -t^-1
            sage: b.alexander_polynomial()
            1

        REFERENCES:

        - :wikipedia:`Alexander_polynomial`
        """
        n = self.strands()
        p = (self.burau_matrix(reduced=True) - identity_matrix(n - 1)).det()
        K, t = LaurentPolynomialRing(IntegerRing(), var).objgen()
        if p == 0:
            return K.zero()
        qn = sum(t ** i for i in range(n))
        p //= qn
        if normalized:
            p *= t ** (-p.degree())
            if p.constant_coefficient() < 0:
                p = -p
        return p