Exemple #1
0
    def __init__(self, Lam):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: Lambda = RootSystem(['A',3,1]).weight_lattice(extended=true).fundamental_weights()
            sage: V = IntegrableRepresentation(Lambda[1]+Lambda[2]+Lambda[3])

        Some methods required by the category are not implemented::

            sage: TestSuite(V).run()  # known bug (#21387)
        """
        CategoryObject.__init__(self, base=ZZ, category=Modules(ZZ))

        self._Lam = Lam
        self._P = Lam.parent()
        self._Q = self._P.root_system.root_lattice()

        # Store some extra simple computations that appear in tight loops
        self._Lam_rho = self._Lam + self._P.rho()

        self._cartan_matrix = self._P.root_system.cartan_matrix()
        self._cartan_type = self._P.root_system.cartan_type()

        self._classical_rank = self._cartan_type.classical().rank()
        self._index_set = self._P.index_set()
        self._index_set_classical = self._cartan_type.classical().index_set()
        self._cminv = self._cartan_type.classical().cartan_matrix().inverse()

        self._ddict = {}
        self._mdict = {tuple(0 for i in self._index_set): 1}
        # Coerce a classical root into the root lattice Q
        from_cl_root = lambda h: self._Q._from_dict(h._monomial_coefficients)
        self._classical_roots = [
            from_cl_root(al) for al in self._Q.classical().roots()
        ]
        self._classical_positive_roots = [
            from_cl_root(al) for al in self._Q.classical().positive_roots()
        ]
        self._a = self._cartan_type.a()  # This is not cached
        self._ac = self._cartan_type.dual().a()  # This is not cached
        self._eps = {i: self._a[i] / self._ac[i] for i in self._index_set}
        E = Matrix.diagonal([self._eps[i] for i in self._index_set_classical])
        self._ip = (self._cartan_type.classical().cartan_matrix() *
                    E).inverse()

        # Extra data for the twisted cases
        if not self._cartan_type.is_untwisted_affine():
            self._classical_short_roots = frozenset(
                al for al in self._classical_roots
                if self._inner_qq(al, al) == 2)
Exemple #2
0
    def __init__(self, Lam):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: Lambda = RootSystem(['A',3,1]).weight_lattice(extended=true).fundamental_weights()
            sage: V = IntegrableRepresentation(Lambda[1]+Lambda[2]+Lambda[3])
            sage: TestSuite(V).run()
        """
        CategoryObject.__init__(self, base=ZZ, category=Modules(ZZ))

        if not Lam.parent().cartan_type().is_affine() or not Lam.parent(
        )._extended:
            raise ValueError(
                "the parent of %s must be an extended affine root lattice" %
                Lam)
        self._Lam = Lam
        self._P = Lam.parent()
        self._Q = self._P.root_system.root_lattice()

        self._cartan_matrix = self._P.root_system.cartan_matrix()
        self._cartan_type = self._P.root_system.cartan_type()
        if not self._cartan_type.is_untwisted_affine():
            raise NotImplementedError(
                "integrable representations are only implemented for untwisted affine types"
            )
        self._classical_rank = self._cartan_type.classical().rank()
        self._index_set = self._P.index_set()
        self._index_set_classical = self._cartan_type.classical().index_set()
        self._cminv = self._cartan_type.classical().cartan_matrix().inverse()

        self._ddict = {}
        self._mdict = {tuple(0 for i in self._index_set): 1}
        # Coerce a classical root into the root lattice Q
        from_cl_root = lambda h: self._Q._from_dict(h._monomial_coefficients)
        self._classical_roots = [
            from_cl_root(al) for al in self._Q.classical().roots()
        ]
        self._classical_positive_roots = [
            from_cl_root(al) for al in self._Q.classical().positive_roots()
        ]
        self._a = self._cartan_type.a()  # This is not cached
        self._ac = self._cartan_type.dual().a()  # This is not cached
        self._eps = {i: self._a[i] / self._ac[i] for i in self._index_set}
        self._coxeter_number = sum(self._a)
        self._dual_coxeter_number = sum(self._ac)
        E = Matrix.diagonal([self._eps[i] for i in self._index_set_classical])
        self._ip = (self._cartan_type.classical().cartan_matrix() *
                    E).inverse()
    def __init__(self, Lam):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: Lambda = RootSystem(['A',3,1]).weight_lattice(extended=true).fundamental_weights()
            sage: V = IntegrableRepresentation(Lambda[1]+Lambda[2]+Lambda[3])

        Some methods required by the category are not implemented::

            sage: TestSuite(V).run()  # known bug (#21387)
        """
        CategoryObject.__init__(self, base=ZZ, category=Modules(ZZ))

        self._Lam = Lam
        self._P = Lam.parent()
        self._Q = self._P.root_system.root_lattice()

        # Store some extra simple computations that appear in tight loops
        self._Lam_rho = self._Lam + self._P.rho()

        self._cartan_matrix = self._P.root_system.cartan_matrix()
        self._cartan_type = self._P.root_system.cartan_type()

        self._classical_rank = self._cartan_type.classical().rank()
        self._index_set = self._P.index_set()
        self._index_set_classical = self._cartan_type.classical().index_set()
        self._cminv = self._cartan_type.classical().cartan_matrix().inverse()

        self._ddict = {}
        self._mdict = {tuple(0 for i in self._index_set): 1}
        # Coerce a classical root into the root lattice Q
        from_cl_root = lambda h: self._Q._from_dict(h._monomial_coefficients)
        self._classical_roots = [from_cl_root(al)
                                 for al in self._Q.classical().roots()]
        self._classical_positive_roots = [from_cl_root(al)
                                          for al in self._Q.classical().positive_roots()]
        self._a = self._cartan_type.a() # This is not cached
        self._ac = self._cartan_type.dual().a() # This is not cached
        self._eps = {i: self._a[i] / self._ac[i] for i in self._index_set}
        E = Matrix.diagonal([self._eps[i] for i in self._index_set_classical])
        self._ip = (self._cartan_type.classical().cartan_matrix()*E).inverse()

        # Extra data for the twisted cases
        if not self._cartan_type.is_untwisted_affine():
            self._classical_short_roots = frozenset(al for al in self._classical_roots
                                                    if self._inner_qq(al,al) == 2)
    def __init__(self, Lam):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: Lambda = RootSystem(['A',3,1]).weight_lattice(extended=true).fundamental_weights()
            sage: V = IntegrableRepresentation(Lambda[1]+Lambda[2]+Lambda[3])
            sage: TestSuite(V).run()
        """
        CategoryObject.__init__(self, base=ZZ, category=Modules(ZZ))

        if not Lam.parent().cartan_type().is_affine() or not Lam.parent()._extended:
            raise ValueError("the parent of %s must be an extended affine root lattice"%Lam)
        self._Lam = Lam
        self._P = Lam.parent()
        self._Q = self._P.root_system.root_lattice()

        self._cartan_matrix = self._P.root_system.cartan_matrix()
        self._cartan_type = self._P.root_system.cartan_type()
        if not self._cartan_type.is_untwisted_affine():
            raise NotImplementedError("integrable representations are only implemented for untwisted affine types")
        self._classical_rank = self._cartan_type.classical().rank()
        self._index_set = self._P.index_set()
        self._index_set_classical = self._cartan_type.classical().index_set()
        self._cminv = self._cartan_type.classical().cartan_matrix().inverse()

        self._ddict = {}
        self._mdict = {tuple(0 for i in self._index_set): 1}
        # Coerce a classical root into the root lattice Q
        from_cl_root = lambda h: self._Q._from_dict(h._monomial_coefficients)
        self._classical_roots = [from_cl_root(al)
                                 for al in self._Q.classical().roots()]
        self._classical_positive_roots = [from_cl_root(al)
                                          for al in self._Q.classical().positive_roots()]
        self._a = self._cartan_type.a() # This is not cached
        self._ac = self._cartan_type.dual().a() # This is not cached
        self._eps = {i: self._a[i] / self._ac[i] for i in self._index_set}
        self._coxeter_number = sum(self._a)
        self._dual_coxeter_number = sum(self._ac)
        E = Matrix.diagonal([self._eps[i] for i in self._index_set_classical])
        self._ip = (self._cartan_type.classical().cartan_matrix()*E).inverse()
Exemple #5
0
    def __init__(self, A, M):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: SGA = SymmetricGroupAlgebra(QQ, 3)
            sage: T = SGA.trivial_representation()
            sage: H = SGA.hochschild_complex(T)

        We skip the category test because the category containment
        tests assumes ``H`` is an instance of :class:`Parent`::

            sage: TestSuite(H).run(skip="_test_category")
            sage: H.category() == ChainComplexes(QQ)
            True
            sage: H in ChainComplexes(QQ) # known bug
            True
        """
        self._A = A
        self._M = M
        CategoryObject.__init__(self, base=A.base_ring(),
                                category=ChainComplexes(A.base_ring()))
Exemple #6
0
    def __init__(self, A, M):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: SGA = SymmetricGroupAlgebra(QQ, 3)
            sage: T = SGA.trivial_representation()
            sage: H = SGA.hochschild_complex(T)

            sage: H.category()
            Category of chain complexes over Rational Field
            sage: H in ChainComplexes(QQ)
            True

        Some methods required by the category are not implemented::

            sage: TestSuite(H).run()  # known bug (#21386)
        """
        self._A = A
        self._M = M
        CategoryObject.__init__(self, base=A.base_ring(),
                                category=ChainComplexes(A.base_ring()))
Exemple #7
0
    def __init__(self, A, M):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: SGA = SymmetricGroupAlgebra(QQ, 3)
            sage: T = SGA.trivial_representation()
            sage: H = SGA.hochschild_complex(T)

        We skip the category test because the category containment
        tests assumes ``H`` is an instance of :class:`Parent`::

            sage: TestSuite(H).run(skip="_test_category")
            sage: H.category() == ChainComplexes(QQ)
            True
            sage: H in ChainComplexes(QQ) # known bug
            True
        """
        self._A = A
        self._M = M
        CategoryObject.__init__(self,
                                base=A.base_ring(),
                                category=ChainComplexes(A.base_ring()))
    def __init__(self, A, M):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: SGA = SymmetricGroupAlgebra(QQ, 3)
            sage: T = SGA.trivial_representation()
            sage: H = SGA.hochschild_complex(T)

            sage: H.category()
            Category of chain complexes over Rational Field
            sage: H in ChainComplexes(QQ)
            True

        Some methods required by the category are not implemented::

            sage: TestSuite(H).run()  # known bug (#21386)
        """
        self._A = A
        self._M = M
        CategoryObject.__init__(self,
                                base=A.base_ring(),
                                category=ChainComplexes(A.base_ring()))
Exemple #9
0
 def __init__(self, range, modulus):
     self._range = range
     self._mod = modulus
     CategoryObject.__init__(self, category=Gradings())
    def __init__(self,
                 rank,
                 name,
                 base_space,
                 field='real',
                 latex_name=None,
                 category=None,
                 unique_tag=None):
        r"""
        Construct a topological vector bundle.

        TESTS::

            sage: M = Manifold(2, 'M', structure='top')
            sage: from sage.manifolds.vector_bundle import TopologicalVectorBundle
            sage: TopologicalVectorBundle(2, 'E', M)
            Topological real vector bundle E -> M of rank 2 over the base space
             2-dimensional topological manifold M

        """
        if base_space is None:
            raise ValueError("a base space must be provided")
        ###
        # Handle the field:
        if field == 'real':
            self._field = RR
            self._field_type = field
        elif field == 'complex':
            self._field = CC
            self._field_type = field
        else:
            self._field = field
            if isinstance(field, RealField_class):
                self._field_type = 'real'
            elif isinstance(field, ComplexField_class):
                self._field_type = 'complex'
            else:
                self._field_type = 'neither_real_nor_complex'
        bs_field = base_space.base_field()
        if not bs_field.is_subring(self._field):
            raise ValueError("for concrete implementation, manifold's base "
                             "field must be a subfield of the vector bundle's "
                             "base field")
        ###
        # Get the category:
        if category is None:
            category = VectorBundles(base_space, self._field)
        CategoryObject.__init__(self, base=self._field, category=category)
        # Check rank:
        if not isinstance(rank, (int, Integer)):
            raise TypeError("the rank must be an integer")
        if rank < 1:
            raise ValueError("the rank must be strictly positive")
        ###
        # Define remaining attributes:
        self._rank = rank
        self._diff_degree = 0
        self._base_space = base_space
        self._total_space = None
        ###
        # Set names:
        self._name = name
        if latex_name is None:
            self._latex_name = self._name
        else:
            self._latex_name = latex_name
        ###
        # Initialize derived quantities like frames and trivializations:
        self._init_derived()