Exemple #1
0
                      owner,
                      usernum,
                      itemnum,
                      batch_size=args.batch_size,
                      n_workers=1)

sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
model = Model(usernum, itemnum, args)
sess.run(tf.initialize_all_variables())

best_valid_auc = 0.5
best_iter = 0

for i in range(args.maximum_epochs):
    for _ in range(oneiteration / args.batch_size):
        batch = sampler.next_train_batch()
        batch_u, batch_i, batch_j, batch_oi, batch_oj = batch
        _, train_loss, train_auc = sess.run(
            (model.gds, model.loss, model.auc), {
                model.batch_u: batch_u,
                model.batch_i: batch_i,
                model.batch_j: batch_j,
                model.batch_oi: batch_oi,
                model.batch_oj: batch_oj
            })
        print train_loss, train_auc

    if i % 10 == 0:
        f.write('#iter %d: loss %f, train auc %f \n' %
                (i, train_loss, train_auc))
        _valid_auc = 0.0
Exemple #2
0

class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = 0.0

    def on_batch_end(self, batch, logs={}):
        self.losses += logs.get('loss')


for i in range(args.maximum_epochs):

    history = LossHistory()
    loss = 0.0
    for _ in range(int(oneiteration / args.batch_size)):
        batch_u, batch_i, batch_j, batch_oi, batch_oj = sampler.next_train_batch(
        )

        if (args.alg == 'posneg'):
            labels = [0] * len(batch_u)
            margin = np.full(len(batch_u), 0.2)

            hist = model.fit([
                np.array(batch_u),
                np.array(batch_i),
                np.array(batch_j),
                np.array(batch_oi),
                np.array(batch_oj), margin
            ],
                             labels,
                             batch_size=args.batch_size,
                             verbose=0,