def ansChecker(trial): trial_bag = sanitize.bag_of_words(trial) scores = [] for i in range(len(bags)): scores.append(score(bags[i], trial_bag)) sorter = sorted(range(len(scores)), key=lambda k: scores[k]) sorter = sorter[::-1] bestGuess = [] bestGuess.append(responses[sorter[0]]) bestGuess.append(responses[sorter[1]]) bestGuess.append(responses[sorter[2]]) bestGuessScores = [] bestGuessScores.append(grades[sorter[0]]) bestGuessScores.append(grades[sorter[1]]) bestGuessScores.append(grades[sorter[2]]) return (bestGuess, bestGuessScores)
#run(host="0.0.0.0", port=8090) #we use: import sanitize from bow_classifier import score responses = [] grades = [] f = open('responses.txt') for line in f: s = line.split(':') grades.append(int(s[0])) responses.append(s[1]) f.close() bags = [sanitize.bag_of_words(response) for response in responses] def ansChecker(trial): trial_bag = sanitize.bag_of_words(trial) scores = [] for i in range(len(bags)): scores.append(score(bags[i], trial_bag)) sorter = sorted(range(len(scores)), key=lambda k: scores[k]) sorter = sorter[::-1] bestGuess = [] bestGuess.append(responses[sorter[0]]) bestGuess.append(responses[sorter[1]]) bestGuess.append(responses[sorter[2]]) bestGuessScores = [] bestGuessScores.append(grades[sorter[0]])
import sanitize from bow_classifier import score responses = [] grades = [] f = open('responses.txt') for line in f: s = line.split(':') grades.append(int(s[0])) responses.append(s[1]) f.close() print grades bags = [sanitize.bag_of_words(response) for response in responses] print "What is entropy?" trial = raw_input() print print trial_bag = sanitize.bag_of_words(trial) print trial_bag print scores = [] for i in range(len(bags)): scores.append(score(bags[i], trial_bag)) sorter = sorted(range(len(scores)), key=lambda k: scores[k]) sorter = sorter[::-1] for i in range(len(bags)): print scores[sorter[i]], ": ", responses[sorter[i]]