def test_up_unsat(): # (x1|~x2|x3)&x2&(~x1|x3)&(x2|~x3) --> UNSAT x1_var = Variable('x1') x2_var = Variable('x2') x3_var = Variable('x3') x1 = Literal(x1_var, negated=False) not_x1 = Literal(x1_var, negated=True) x2 = Literal(x2_var, negated=False) not_x2 = Literal(x2_var, negated=True) x3 = Literal(x3_var, negated=False) not_x3 = Literal(x3_var, negated=True) clauses = [[x1, not_x2, x3], [x2], [not_x1, x3], [not_x2, not_x3]] # literal_to_clauses = {x1: {0}, not_x1: {2}, not_x2: {0, 3}, x2: {1}, x3: {0, 2}, not_x3: {3}} cnf = CnfFormula(clauses) cnf = preprocess(cnf) dpll = DPLL(cnf) actual_cnf = dpll.unit_propagation() assert actual_cnf is None assert not dpll.get_full_assignment()[x3_var] assert dpll.get_full_assignment()[x2_var]
def test_search_complex(): # (~x|z) & (~x|~z|~y) & (~z|w) & (~w|~y) (lec3, slide 18) # (~x1 | x2) & (~x1 | ~x2 | ~x3) & (~x2 | x4) & (~x4| ~x3) x1_var = Variable('x1') x2_var = Variable('x2') x3_var = Variable('x3') x4_var = Variable('x4') x5_var = Variable('x5') x6_var = Variable('x6') x1 = Literal(x1_var, negated=False) not_x1 = Literal(x1_var, negated=True) x2 = Literal(x2_var, negated=False) not_x2 = Literal(x2_var, negated=True) x3 = Literal(x3_var, negated=False) not_x3 = Literal(x3_var, negated=True) x4 = Literal(x4_var, negated=False) not_x4 = Literal(x4_var, negated=True) x5 = Literal(x5_var, negated=False) not_x5 = Literal(x5_var, negated=True) x6 = Literal(x6_var, negated=False) not_x6 = Literal(x6_var, negated=True) # (~x1 | x2) & (~x1 | ~x2 | ~x3) & (~x2 | x4) & (~x4| ~x3) clauses = [[not_x1, x2], [not_x1, not_x2, not_x3], [not_x2, x4], [not_x4, not_x3], [x5, x6], [not_x5, not_x6]] cnf = CnfFormula(clauses) cnf = preprocess(cnf) dpll = DPLL(cnf) search_result = dpll.search() assert search_result
def test_find_all_paths(): vars = [Variable('x{}'.format(i + 1)) for i in range(8)] pos_l = [None] + [Literal(v, negated=False) for v in vars] neg_l = [None] + [Literal(v, negated=True) for v in vars] clauses = [[pos_l[1]], [neg_l[1], pos_l[5]], [neg_l[1], pos_l[3]], [neg_l[2], neg_l[3], pos_l[4]], [neg_l[5], pos_l[2]]] cnf = CnfFormula(clauses) cnf = preprocess(cnf) g = ImplicationGraph(cnf) g.add_decide_node(1, pos_l[1]) g.add_node(1, pos_l[3], None, 2) g.add_node(1, pos_l[5], None, 1) g.add_node(1, pos_l[2], None, 4) # g.add_node(1, pos_l[2], None, 3) g.add_node(1, pos_l[4], None, 3) source_node = g._nodes[pos_l[1]] target_node = g._nodes[pos_l[4]] actual_paths = g._find_all_paths(source_node, target_node) expected_paths = [[ pos_l[1].variable, pos_l[5].variable, pos_l[2].variable, pos_l[4].variable ], [pos_l[1].variable, pos_l[3].variable, pos_l[4].variable]] assert {(frozenset(item)) for item in actual_paths} == {(frozenset(item)) for item in expected_paths}
def get_complicated_graph() -> (ImplicationGraph, int, List[Variable]): variables = [Variable('TEMP') ] + [Variable('x{}'.format(i + 1)) for i in range(10)] pos_l = [Literal(v, negated=False) for v in variables] neg_l = [Literal(v, negated=True) for v in variables] c0 = [pos_l[10] ] # unused clause to keep the numbering aligned to the slides c1 = [pos_l[2], pos_l[3]] c2 = [pos_l[9] ] # unused clause to keep the numbering aligned to the slides c3 = [neg_l[3], neg_l[4]] c4 = [neg_l[4], neg_l[2], neg_l[1]] c5 = [neg_l[6], neg_l[5], pos_l[4]] c6 = [pos_l[7], pos_l[5]] c7 = [neg_l[8], pos_l[7], pos_l[6]] conflict = [c0, c1, c2, c3, c4, c5, c6, c7] clauses = conflict cnf = CnfFormula(clauses) cnf = preprocess(cnf) g = ImplicationGraph(cnf) g.add_decide_node(1, pos_l[1]) g.add_decide_node(2, pos_l[8]) g.add_decide_node(3, pos_l[7]) g.add_node(3, pos_l[6], None, 7) g.add_node(3, pos_l[5], None, 6) g.add_node(3, pos_l[4], None, 5) g.add_node(3, neg_l[3], None, 3) g.add_node(3, neg_l[2], None, 4) return g, 1, variables
def test_search_complex_unsat(): variables = [Variable('TEMP') ] + [Variable('x{}'.format(i + 1)) for i in range(10)] pos_l = [Literal(v, negated=False) for v in variables] neg_l = [Literal(v, negated=True) for v in variables] # x1 = T, x2 = F, x3 = # x3 != x2 /\ x1 != x2 /\ (!x1 \/ x2 \/ !x3) /\ (x1 \/ !x2 \/ x3) clauses = [[pos_l[1], pos_l[2]], [neg_l[1], neg_l[2]], [pos_l[3], pos_l[2]], [neg_l[3], neg_l[2]], [neg_l[1], pos_l[2], neg_l[3]], [pos_l[3], neg_l[2], pos_l[1]]] cnf = CnfFormula(clauses) cnf = preprocess(cnf) dpll = DPLL(cnf) search_result = dpll.search() # print(dpll.get_assignment()) assert not search_result
def test_search_simple_unsat(): # (x1|~x2) | (~x1 | x2) x1_var = Variable('x1') x2_var = Variable('x2') # x3_var = Variable('x3') x1 = Literal(x1_var, negated=False) not_x1 = Literal(x1_var, negated=True) x2 = Literal(x2_var, negated=False) not_x2 = Literal(x2_var, negated=True) clauses = [[x1], [x2], [not_x1, not_x2]] # literal_to_clauses = {x1: {0}, x2: {0}, x3: {0}} #not_x1: {2}, not_x2: {0} cnf = CnfFormula(clauses) cnf = preprocess(cnf) dpll = DPLL(cnf) search_result = dpll.search() assert not search_result
def test_search_simple(): # (x1|x2|~x3) | (x3 | ~x2) x1_var = Variable('x1') x2_var = Variable('x2') x3_var = Variable('x3') x1 = Literal(x1_var, negated=False) not_x1 = Literal(x1_var, negated=True) x2 = Literal(x2_var, negated=False) not_x2 = Literal(x2_var, negated=True) x3 = Literal(x3_var, negated=False) not_x3 = Literal(x3_var, negated=True) clauses = [[x1, x2, not_x3], [x3, not_x2]] cnf = CnfFormula(clauses) cnf = preprocess(cnf) dpll = DPLL(cnf) search_result = dpll.search() assert search_result
def test_multi_level_deduction_sat(): x1_var = Variable('x1') x2_var = Variable('x2') x3_var = Variable('x3') x1 = Literal(x1_var, negated=False) not_x1 = Literal(x1_var, negated=True) x2 = Literal(x2_var, negated=False) not_x2 = Literal(x2_var, negated=True) x3 = Literal(x3_var, negated=False) not_x3 = Literal(x3_var, negated=True) clauses = [[x1], [x3, x2], [not_x2, not_x3, not_x1]] cnf = CnfFormula(clauses) cnf = preprocess(cnf) dpll = DPLL(cnf) search_result = dpll.search() assert search_result
def get_simple_graph() -> (ImplicationGraph, int, List[Variable]): variables = [Variable('TEMP') ] + [Variable('x{}'.format(i + 1)) for i in range(8)] pos_l = [Literal(v, negated=False) for v in variables] neg_l = [Literal(v, negated=True) for v in variables] # x1 =True --> x3=True, x5=True --> x2 = True, clauses = [[pos_l[1]], [neg_l[1], pos_l[5]], [neg_l[1], pos_l[3]], [neg_l[2], neg_l[3]], [neg_l[5], pos_l[2]]] cnf = CnfFormula(clauses) cnf = preprocess(cnf) g = ImplicationGraph(cnf) g.add_decide_node(1, pos_l[1]) g.add_node(1, pos_l[3], None, 2) g.add_node(1, pos_l[5], None, 1) g.add_node(1, neg_l[2], None, 4) # g.add_node(1, pos_l[2], None, 3) # g.add_node(1, pos_l[4], None, 3) return g, 3, variables
def test_multi_level_conflict_sat(): vars = [Variable('x{}'.format(i + 1)) for i in range(8)] pos_l = [None] + [Literal(v, negated=False) for v in vars] neg_l = [None] + [Literal(v, negated=True) for v in vars] c1 = [pos_l[2], pos_l[3]] # c2 = [pos_l[1], pos_l[4], neg_l[8]] c3 = [neg_l[3], neg_l[4]] c4 = [neg_l[4], neg_l[2], neg_l[1]] c5 = [neg_l[6], neg_l[5], pos_l[4]] c6 = [pos_l[7], pos_l[5]] c7 = [neg_l[8], pos_l[7], pos_l[6]] conflict = [c3, c4, c5, c6, c7, c1] # c2, # If we implement pure_literal will need to change this # this is just to make sure the order decisions will be: x1=True, x2=True, x3=True, the conflict is because x1 n_temps = 4 temp_literals = [ Literal(Variable('x1_temp{}'.format(idx)), negated=False) for idx in range(n_temps) ] x1_clauses = [[pos_l[1], l] for l in temp_literals] temp_literals = [ Literal(Variable('x8_temp{}'.format(idx)), negated=False) for idx in range(n_temps) ] x8_clauses = [[pos_l[8], l] for l in temp_literals[:-1]] temp_literals = [ Literal(Variable('x7_temp{}'.format(idx)), negated=False) for idx in range(n_temps) ] x7_clauses = [[neg_l[7], l] for l in temp_literals[:-2]] clauses = x1_clauses + x8_clauses + x7_clauses + conflict cnf = CnfFormula(clauses) cnf = preprocess(cnf) dpll = DPLL(cnf) search_result = dpll.search() assert search_result
def test_up_simple(): # (x1|~x2|x3)&x2&(~x1|x3) --> (x1|x3) & (~x1|x3) x1_var = Variable('x1') x2_var = Variable('x2') x3_var = Variable('x3') x1 = Literal(x1_var, negated=False) not_x1 = Literal(x1_var, negated=True) x2 = Literal(x2_var, negated=False) not_x2 = Literal(x2_var, negated=True) x3 = Literal(x3_var, negated=False) clauses = [[x1, not_x2, x3], [x2], [not_x1, x3]] cnf = CnfFormula(clauses) cnf = preprocess(cnf) dpll = DPLL(cnf) actual_cnf = dpll.unit_propagation() expected_cnf = [[x1, not_x2, x3], [not_x1, x3]] assert dpll.get_full_assignment()[x2_var] actual_cnf_real = [cl for cl in actual_cnf.clauses if cl != []] assert actual_cnf_real == expected_cnf, dpll.get_full_assignment()
def perform_test(clauses: List[List[Literal]], debug=False): z3_time_start = timer() z3_res = get_z3_result(clauses, debug) z3_time_end = timer() our_time_start = timer() cnf = CnfFormula(clauses) cnf = preprocess(cnf) dpll = DPLL(cnf) search_result = dpll.search() if debug: print(dpll.get_full_assignment()) our_time_end = timer() assert search_result == z3_res, "Our: {}, Z3: {}".format( search_result, z3_res) res_str = 'Sat ' if search_result else 'UNSAT ' all_vars = set([lit.variable for clause in clauses for lit in clause]) res_str += "#var: {}, #clauses: {} #per_clause: {} ".format( len(all_vars), len(clauses), len(clauses[0])) res_str += "Time(sec): Our {:0.2f}, z3: {:0.2f}".format( our_time_end - our_time_start, z3_time_end - z3_time_start) print(res_str)