Exemple #1
0
    def create_initial_assignment(sid: str, value: str) -> None:
        """Create initial assignments helper."""
        # check if valid identifier
        if "(" in sid:
            warnings.warn(
                f"sid is not valid: {sid}. Initial assignment is not generated"
            )
            return

        try:
            f_value = float(value)
            parameters.append(
                fac.Parameter(
                    sid=sid,
                    value=f_value,
                    name=f"{sid} = {value}",
                    constant=False,
                ))
        except ValueError:
            """
            Initial data are optional, XPP sets them to zero by default (many
            xpp model don't write the p(0)=0.
            """
            parameters.append(
                fac.Parameter(sid=sid, value=0.0, name=sid, constant=False))
            initial_assignments.append(
                fac.InitialAssignment(sid=sid,
                                      value=value,
                                      name=f"{sid} = {value}"))
Exemple #2
0
def add_default_flux_bounds(doc, lower=0.0, upper=100.0, unit='mole_per_s'):
    """ Adds default flux bounds to SBMLDocument.

    :param doc:
    :type doc:
    :param lower:
    :type lower:
    :param upper:
    :type upper:
    """
    # FIXME: overwrites lower/upper parameter (check if existing)
    # TODO: the units are very specific (more generic)
    warnings.warn('Adding default flux bounds', UserWarning)
    model = doc.getModel()
    parameters = [
        factory.Parameter(sid='upper', value=upper, unit=unit),
        factory.Parameter(sid='lower', value=lower, unit=unit),
    ]
    factory.create_objects(model, parameters)
    for r in model.reactions:
        rfbc = r.getPlugin("fbc")
        if not rfbc.isSetLowerFluxBound():
            rfbc.setLowerFluxBound('lower')
        if not rfbc.isSetUpperFluxBound():
            rfbc.setUpperFluxBound('upper')
Exemple #3
0
    def create_initial_assignment(sid, value):
        """ Helper for creating initial assignments """
        # check if valid identifier
        if "(" in sid:
            warnings.warn(
                "sid is not valid: {}. Initial assignment is not generated".
                format(sid))
            return

        try:
            f_value = float(value)
            parameters.append(
                fac.Parameter(
                    sid=sid,
                    value=f_value,
                    name="{} = {}".format(sid, value),
                    constant=False,
                ))
        except ValueError:
            """
            Initial data are optional, XPP sets them to zero by default (many xpp model don't write the p(0)=0.
            """
            parameters.append(
                fac.Parameter(sid=sid, value=0.0, name=sid, constant=False))
            initial_assignments.append(
                fac.InitialAssignment(sid=sid,
                                      value=value,
                                      name="{} = {}".format(sid, value)))
Exemple #4
0
def bounds_model(sbml_file, directory, doc_fba, annotations=None):
    """"
    Bounds model.
    """
    bounds_notes = notes.format("""
    <h2>BOUNDS submodel</h2>
    <p>Submodel for dynamically calculating the flux bounds.
    The dynamically changing flux bounds are the input to the
    FBA model.</p>
    """)
    doc = builder.template_doc_bounds(settings.MODEL_ID)
    model = doc.getModel()
    utils.set_model_info(model,
                         notes=bounds_notes,
                         creators=creators,
                         units=units, main_units=main_units)

    builder.create_dfba_dt(model, step_size=DT_SIM, time_unit=UNIT_TIME, create_port=True)

    # compartment
    compartment_id = 'extern'
    builder.create_dfba_compartment(model, compartment_id=compartment_id, unit_volume=UNIT_VOLUME,
                                    create_port=True)

    # species
    model_fba = doc_fba.getModel()
    builder.create_dfba_species(model, model_fba, compartment_id=compartment_id, unit_amount=UNIT_AMOUNT,
                                hasOnlySubstanceUnits=True, create_port=True)

    # exchange bounds
    builder.create_exchange_bounds(model, model_fba=model_fba, unit_flux=UNIT_FLUX, create_ports=True)


    objects = [
        # exchange bounds
        # FIXME: readout the FBA network bounds
        mc.Parameter(sid="lb_default", value=builder.LOWER_BOUND_DEFAULT, unit=UNIT_FLUX, constant=True),

        # kinetic bound parameter & calculation
        mc.Parameter(sid='ub_R1', value=1.0, unit=UNIT_FLUX, constant=False, sboTerm="SBO:0000625"),
        mc.Parameter(sid='k1', value=-0.2, unit="per_s", name="k1", constant=False),
        mc.RateRule(sid="ub_R1", value="k1*ub_R1"),

        # bound assignment rules
        mc.AssignmentRule(sid="lb_EX_A", value='max(lb_default, -A/dt)'),
        mc.AssignmentRule(sid="lb_EX_C", value='max(lb_default, -C/dt)'),
    ]
    mc.create_objects(model, objects)

    # ports
    comp.create_ports(model, portType=comp.PORT_TYPE_PORT,
                      idRefs=["ub_R1"])
    if annotations:
        annotator.annotate_sbml_doc(doc, annotations)
    sbmlio.write_sbml(doc, filepath=os.path.join(directory, sbml_file), validate=True)
def bounds_model(sbml_file, directory, doc_fba=None):
    """"
    Submodel for dynamically calculating the flux bounds.

    The dynamically changing flux bounds are the input to the
    FBA model.
    """
    doc = builder.template_doc_bounds(settings.MODEL_ID)
    model = doc.getModel()

    bounds_notes = notes.format("""
    <h2>BOUNDS submodel</h2>
    <p>Submodel for dynamically calculating the flux bounds.
    The dynamically changing flux bounds are the input to the
    FBA model.</p>
    """)
    utils.set_model_info(model, notes=bounds_notes, creators=creators, units=units, main_units=main_units)

    # dt
    compartment_id = "blood"
    builder.create_dfba_dt(model, time_unit=UNIT_TIME, create_port=True)

    # compartment
    builder.create_dfba_compartment(model, compartment_id=compartment_id, unit_volume=UNIT_VOLUME, create_port=True)

    # dynamic species
    model_fba = doc_fba.getModel()
    builder.create_dfba_species(model, model_fba, compartment_id=compartment_id, unit_amount=UNIT_AMOUNT,
                                create_port=True)

    # bounds
    builder.create_exchange_bounds(model, model_fba=model_fba, unit_flux=UNIT_FLUX, create_ports=True)

    # bounds
    fba_prefix = "fba"
    model_fba = doc_fba.getModel()
    objects = []
    ex_rids = utils.find_exchange_reactions(model_fba)
    for ex_rid, sid in ex_rids.items():
        r = model_fba.getReaction(ex_rid)

        # lower & upper bound parameters
        r_fbc = r.getPlugin(builder.SBML_FBC_NAME)
        lb_id = r_fbc.getLowerFluxBound()
        fba_lb_id = fba_prefix + lb_id
        lb_value = model_fba.getParameter(lb_id).getValue()

        objects.extend([
            # default bounds from fba
            mc.Parameter(sid=fba_lb_id, value=lb_value, unit=UNIT_FLUX, constant=False),
            # uptake bounds (lower bound)
            mc.AssignmentRule(sid=lb_id, value="max({}, -{}*{}/dt)".format(fba_lb_id, compartment_id, sid)),
        ])
    mc.create_objects(model, objects)

    sbmlio.write_sbml(doc, filepath=pjoin(directory, sbml_file), validate=True)
Exemple #6
0
def create_port_doc():
    sbmlns = libsbml.SBMLNamespaces(3, 1, "comp", 1)
    doc = libsbml.SBMLDocument(sbmlns)
    doc.setPackageRequired("comp", True)
    model = doc.createModel()
    model.setId("toy_update")
    model.setName("toy (UPDATE submodel)")
    model.setSBOTerm(SBO_CONTINOUS_FRAMEWORK)

    objects = [
        fac.Compartment(
            sid="extern",
            value=1.0,
            unit="m3",
            constant=True,
            name="external compartment",
        ),
        fac.Species(
            sid="A",
            name="A",
            initialConcentration=10.0,
            hasOnlySubstanceUnits=True,
            compartment="extern",
        ),
        fac.Species(
            sid="C",
            name="C",
            initialConcentration=0,
            hasOnlySubstanceUnits=True,
            compartment="extern",
        ),
        fac.Parameter(sid="EX_A",
                      value=1.0,
                      constant=False,
                      sboTerm="SBO:0000613"),
        fac.Parameter(sid="EX_C",
                      value=1.0,
                      constant=False,
                      sboTerm="SBO:0000613"),
    ]
    fac.create_objects(model, obj_iter=objects)
    return doc
def bounds_model(sbml_file, directory, doc_fba=None):
    """"
    Submodel for dynamically calculating the flux bounds.

    The dynamically changing flux bounds are the input to the
    FBA model.

    The units of the exchange fluxes must fit to the transported species.
    """
    doc = builder.template_doc_bounds("ecoli")
    model = doc.getModel()

    bounds_notes = notes.format("""
    <h2>BOUNDS submodel</h2>
    <p>Submodel for dynamically calculating the flux bounds.
    The dynamically changing flux bounds are the input to the
    FBA model.</p>
    """)
    utils.set_model_info(model, notes=bounds_notes, creators=creators, units=units, main_units=main_units)

    # dt
    compartment_id = "bioreactor"
    builder.create_dfba_dt(model, time_unit=UNIT_TIME, create_port=True)

    # compartment
    builder.create_dfba_compartment(model, compartment_id=compartment_id, unit_volume=UNIT_VOLUME, create_port=True)

    # dynamic species
    model_fba = doc_fba.getModel()
    builder.create_dfba_species(model, model_fba, compartment_id=compartment_id, unit_amount=UNIT_AMOUNT, create_port=True,
                                exclude_sids=['X'])
    # FIXME: define biomass separately, also port needed for biomass
    mc.create_objects(model, [
        mc.Parameter(sid='cf_X', value=1.0, unit="g_per_mmol", name="biomass conversion factor", constant=True),
        mc.Species(sid='X', initialAmount=0.001, compartment=compartment_id, name='biomass', substanceUnit='g', hasOnlySubstanceUnits=True,
                   conversionFactor='cf_X')
    ])


    # exchange & dynamic bounds
    if not biomass_weighting:
        builder.create_exchange_bounds(model, model_fba=model_fba, unit_flux=UNIT_FLUX, create_ports=True)
        builder.create_dynamic_bounds(model, model_fba, unit_flux=UNIT_FLUX)
    else:
        builder.create_exchange_bounds(model, model_fba=model_fba, unit_flux=UNIT_FLUX_PER_G, create_ports=True)
        builder.create_dynamic_bounds(model, model_fba, unit_flux=UNIT_FLUX_PER_G)

    sbmlio.write_sbml(doc, filepath=pjoin(directory, sbml_file), validate=True)
def update_model(sbml_file, directory, doc_fba=None):
    """
        Submodel for dynamically updating the metabolite count/concentration.
        This updates the ode model based on the FBA fluxes.
    """
    doc = builder.template_doc_update("ecoli")
    model = doc.getModel()
    update_notes = notes.format("""
        <h2>UPDATE submodel</h2>
        <p>Submodel for dynamically updating the metabolite count.
        This updates the ode model based on the FBA fluxes.</p>
        """)
    utils.set_model_info(model, notes=update_notes, creators=creators, units=units, main_units=main_units)

    # compartment
    compartment_id = "bioreactor"
    builder.create_dfba_compartment(model, compartment_id=compartment_id, unit_volume=UNIT_VOLUME, create_port=True)

    # dynamic species
    model_fba = doc_fba.getModel()


    # creates all the exchange reactions, biomass must be handeled separately
    builder.create_dfba_species(model, model_fba, compartment_id=compartment_id, unit_amount=UNIT_AMOUNT, create_port=True)

    # FIXME: biomass via function
    mc.create_objects(model, [
        mc.Parameter(sid='cf_biomass', value=1.0, unit="g_per_mmol", name="biomass conversion factor", constant=True),
        mc.Species(sid='X', initialAmount=0.001, compartment='c', name='biomass', substanceUnit='g', hasOnlySubstanceUnits=True,
                   conversionFactor='cf_biomass')
    ])


    # update reactions
    # FIXME: weight with X (biomass)
    builder.create_update_reactions(model, model_fba=model_fba, formula="-{}", unit_flux=UNIT_FLUX,
                                    modifiers=[])

    # write SBML file
    sbmlio.write_sbml(doc, filepath=pjoin(directory, sbml_file), validate=True)
def top_model(sbml_file, directory, emds, doc_fba, annotations=None):
    """ Create top comp model.

    Creates full comp model by combining fba, update and bounds
    model with additional kinetics in the top model.
    """
    top_notes = notes.format("""
        <h2>TOP model</h2>
        <p>Main comp DFBA model by combining fba, update and bounds
            model with additional kinetics in the top model.</p>
        """)
    working_dir = os.getcwd()
    os.chdir(directory)

    doc = builder.template_doc_top(settings.MODEL_ID, emds)
    model = doc.getModel()
    utils.set_model_info(model,
                         notes=top_notes,
                         creators=creators,
                         units=units,
                         main_units=main_units)

    # dt
    builder.create_dfba_dt(model,
                           step_size=DT_SIM,
                           time_unit=UNIT_TIME,
                           create_port=False)

    # compartment
    compartment_id = "cell"
    builder.create_dfba_compartment(model,
                                    compartment_id=compartment_id,
                                    unit_volume=UNIT_VOLUME,
                                    create_port=False)

    # dynamic species
    model_fba = doc_fba.getModel()
    builder.create_dfba_species(model,
                                model_fba,
                                compartment_id=compartment_id,
                                hasOnlySubstanceUnits=False,
                                unit_amount=UNIT_AMOUNT,
                                create_port=False)
    # dummy species
    builder.create_dummy_species(model,
                                 compartment_id=compartment_id,
                                 hasOnlySubstanceUnits=False,
                                 unit_amount=UNIT_AMOUNT)

    # exchange flux bounds
    builder.create_exchange_bounds(model,
                                   model_fba=model_fba,
                                   unit_flux=UNIT_FLUX,
                                   create_ports=False)

    # dummy reactions & flux assignments
    builder.create_dummy_reactions(model,
                                   model_fba=model_fba,
                                   unit_flux=UNIT_FLUX)

    # replacedBy (fba reactions)
    builder.create_top_replacedBy(model, model_fba=model_fba)

    # replaced
    builder.create_top_replacements(model,
                                    model_fba,
                                    compartment_id=compartment_id)

    objects = [
        # kinetic parameters
        mc.Parameter(sid="Vmax_RATP", value=1, unit=UNIT_FLUX, constant=True),
        mc.Parameter(sid='k_RATP',
                     value=0.1,
                     unit=UNIT_CONCENTRATION,
                     constant=True),

        # balancing rules
        mc.AssignmentRule(sid="atp_tot",
                          value="atp + adp",
                          unit=UNIT_CONCENTRATION),
        mc.AssignmentRule(sid="c3_tot",
                          value="2 dimensionless * glc + pyr",
                          unit="mM")
    ]
    mc.create_objects(model, objects)

    ratp = mc.create_reaction(model,
                              rid="RATP",
                              name="atp -> adp",
                              fast=False,
                              reversible=False,
                              reactants={"atp": 1},
                              products={"adp": 1},
                              compartment=compartment_id,
                              formula='Vmax_RATP * atp/(k_RATP + atp)')

    # initial concentrations for fba exchange species
    initial_c = {'atp': 2.0, 'adp': 1.0, 'glc': 5.0, 'pyr': 0.0}
    for sid, value in initial_c.items():
        species = model.getSpecies(sid)
        species.setInitialConcentration(value)

    # write SBML file
    if annotations:
        annotator.annotate_sbml_doc(doc, annotations)
    sbmlio.write_sbml(doc,
                      filepath=os.path.join(directory, sbml_file),
                      validate=True)

    # change back the working dir
    os.chdir(working_dir)
def fba_model(sbml_file, directory, annotations=None):
    """ FBA model
    
    :param sbml_file: output file name 
    :param directory: output directory
    :return: SBMLDocument
    """
    fba_notes = notes.format("""
    <h2>FBA submodel</h2>
    <p>DFBA fba submodel. Unbalanced metabolites are encoded via exchange fluxes.</p>
    """)
    doc = builder.template_doc_fba(settings.MODEL_ID)
    model = doc.getModel()
    utils.set_model_info(model,
                         notes=fba_notes,
                         creators=creators,
                         units=units,
                         main_units=main_units)

    objects = [
        # compartments
        mc.Compartment(sid='cell',
                       value=1.0,
                       unit=UNIT_VOLUME,
                       constant=True,
                       name='cell',
                       spatialDimensions=3),

        # exchange species
        mc.Species(sid='atp',
                   name="ATP",
                   initialConcentration=0,
                   substanceUnit=UNIT_AMOUNT,
                   hasOnlySubstanceUnits=False,
                   compartment="cell"),
        mc.Species(sid='adp',
                   name="ADP",
                   initialConcentration=0,
                   substanceUnit=UNIT_AMOUNT,
                   hasOnlySubstanceUnits=False,
                   compartment="cell"),
        mc.Species(sid='glc',
                   name="Glucose",
                   initialConcentration=0,
                   substanceUnit=UNIT_AMOUNT,
                   hasOnlySubstanceUnits=False,
                   compartment="cell"),
        mc.Species(sid='pyr',
                   name='Pyruvate',
                   initialConcentration=0,
                   substanceUnit=UNIT_AMOUNT,
                   hasOnlySubstanceUnits=False,
                   compartment="cell"),

        # internal species
        mc.Species(sid='fru16bp',
                   name='Fructose 1,6-bisphospate',
                   initialConcentration=0,
                   substanceUnit=UNIT_AMOUNT,
                   hasOnlySubstanceUnits=False,
                   compartment="cell"),
        mc.Species(sid='pg2',
                   name='2-Phosphoglycerate',
                   initialConcentration=0,
                   substanceUnit=UNIT_AMOUNT,
                   hasOnlySubstanceUnits=False,
                   compartment="cell"),

        # bounds
        mc.Parameter(sid="ub_R3",
                     value=1.0,
                     unit=UNIT_FLUX,
                     constant=True,
                     sboTerm=builder.FLUX_BOUND_SBO),
        mc.Parameter(sid="zero",
                     value=0.0,
                     unit=UNIT_FLUX,
                     constant=True,
                     sboTerm=builder.FLUX_BOUND_SBO),
        mc.Parameter(sid="ub_default",
                     value=builder.UPPER_BOUND_DEFAULT,
                     unit=UNIT_FLUX,
                     constant=True,
                     sboTerm=builder.FLUX_BOUND_SBO),
    ]
    mc.create_objects(model, objects)

    # reactions
    r1 = mc.create_reaction(model,
                            rid="R1",
                            name="glu + 2 atp -> fru16bp + 2 adp",
                            fast=False,
                            reversible=False,
                            reactants={
                                "glc": 1,
                                "atp": 2
                            },
                            products={
                                "fru16bp": 1,
                                'adp': 2
                            },
                            compartment='cell')
    r2 = mc.create_reaction(model,
                            rid="R2",
                            name="fru16bp -> 2 pg2",
                            fast=False,
                            reversible=False,
                            reactants={"fru16bp": 1},
                            products={"pg2": 2},
                            compartment='cell')
    r3 = mc.create_reaction(model,
                            rid="R3",
                            name="pg2 + adp -> pyr + atp",
                            fast=False,
                            reversible=False,
                            reactants={
                                "pg2": 1,
                                "adp": 2
                            },
                            products={
                                "pyr": 1,
                                "atp": 2
                            },
                            compartment='cell')

    # flux bounds
    fbc.set_flux_bounds(r1, lb="zero", ub="ub_default")
    fbc.set_flux_bounds(r2, lb="zero", ub="ub_default")
    fbc.set_flux_bounds(r3, lb="zero", ub="ub_R3")
    # fbc.set_flux_bounds(ratp, lb="zero", ub="ub_RATP")

    # exchange reactions
    for sid in ['atp', 'adp', 'glc', 'pyr']:
        builder.create_exchange_reaction(model,
                                         species_id=sid,
                                         flux_unit=UNIT_FLUX)

    # objective function
    model_fbc = model.getPlugin("fbc")
    fbc.create_objective(model_fbc,
                         oid="RATP_maximize",
                         otype="maximize",
                         fluxObjectives={"R3": 1.0},
                         active=True)

    if annotations:
        annotator.annotate_sbml_doc(doc, annotations)

    # write SBML
    sbmlio.write_sbml(doc,
                      filepath=os.path.join(directory, sbml_file),
                      validate=True)
    return doc
Exemple #11
0
    mc.Species('lacRBC',
               compartment="Vrbc",
               initialConcentration=0,
               unit='mmole',
               name="lactate",
               hasOnlySubstanceUnits=True,
               constant=False),
]

##############################################################
# Parameters
##############################################################
parameters = [
    mc.Parameter('alpha',
                 0.9,
                 '-',
                 constant=True,
                 name='volume fraction erythrocytes'),
]

##############################################################
# Assignments
##############################################################
assignments = []

##############################################################
# AssignmentRules
##############################################################
rules = [
    # volumes
    mc.AssignmentRule('Vrbc', 'Vpl * alpha', UNIT_KIND_LITRE),
                       name="{} ({})".format(s_dict['name'], c_name),
                       hasOnlySubstanceUnits=True))
    species.append(
        mc.Species('Aurine_{}'.format(s_id),
                   0,
                   compartment="Vurine",
                   unit='mmole',
                   name="{} (urine)".format(s_dict['name']),
                   hasOnlySubstanceUnits=True), )

##############################################################
# Parameters
##############################################################
parameters = [
    # whole body data
    mc.Parameter('BW', 75, 'kg', constant=True, name='body weight [kg]'),
    mc.Parameter('HEIGHT', 170, 'cm', constant=True, name='height [cm]'),
    mc.Parameter('HR', 70, 'per_min', constant=True,
                 name='heart rate [1/min]'),
    mc.Parameter('HRrest',
                 70,
                 'per_min',
                 constant=True,
                 name='heart rate [1/min]'),
    mc.Parameter('BSA',
                 0,
                 'm2',
                 constant=False,
                 name='body surface area [m^2]'),
    mc.Parameter('COBW',
                 1.548,
Exemple #13
0
def xpp2sbml(
    xpp_file: Path,
    sbml_file: Path,
    force_lower: bool = False,
    validate: bool = True,
    debug: bool = False,
):
    """Reads given xpp_file and converts to SBML file.

    :param xpp_file: xpp input ode file
    :param sbml_file: sbml output file
    :param force_lower: force lower case for all lines
    :param validate: perform validation on the generated SBML file
    :return:
    """
    print("-" * 80)
    print("xpp2sbml: ", xpp_file, "->", sbml_file)
    print("-" * 80)
    doc = libsbml.SBMLDocument(3, 1)
    model = doc.createModel()

    parameters = []
    initial_assignments = []
    rate_rules = []
    assignment_rules = []
    functions = [
        # definition of min and max
        fac.Function("max",
                     "lambda(x,y, piecewise(x,gt(x,y),y) )",
                     name="minimum"),
        fac.Function("min",
                     "lambda(x,y, piecewise(x,lt(x,y),y) )",
                     name="maximum"),
        # heav (heavyside)
        fac.Function(
            "heav",
            "lambda(x, piecewise(0,lt(x,0), 0.5, eq(x, 0), 1,gt(x,0), 0))",
            name="heavyside",
        ),
        # mod (modulo)
        fac.Function("mod", "lambda(x,y, x % y)", name="modulo"),
    ]
    function_definitions = []
    events = []

    def replace_fdef():
        """ Replace all arguments within the formula definitions."""
        changes = False
        for k, fdata in enumerate(function_definitions):
            for i in range(len(function_definitions)):
                if i != k:
                    # replace i with k
                    formula = function_definitions[i]["formula"]
                    new_formula = xpp_helpers.replace_formula(
                        formula,
                        fid=function_definitions[k]["fid"],
                        old_args=function_definitions[k]["old_args"],
                        new_args=function_definitions[k]["new_args"],
                    )
                    if new_formula != formula:
                        function_definitions[i]["formula"] = new_formula
                        function_definitions[i]["new_args"] = list(
                            sorted(
                                set(function_definitions[i]["new_args"] +
                                    function_definitions[k]["new_args"])))
                        changes = True

        return changes

    def create_initial_assignment(sid, value):
        """ Helper for creating initial assignments """
        # check if valid identifier
        if "(" in sid:
            warnings.warn(
                "sid is not valid: {}. Initial assignment is not generated".
                format(sid))
            return

        try:
            f_value = float(value)
            parameters.append(
                fac.Parameter(
                    sid=sid,
                    value=f_value,
                    name="{} = {}".format(sid, value),
                    constant=False,
                ))
        except ValueError:
            """
            Initial data are optional, XPP sets them to zero by default (many xpp model don't write the p(0)=0.
            """
            parameters.append(
                fac.Parameter(sid=sid, value=0.0, name=sid, constant=False))
            initial_assignments.append(
                fac.InitialAssignment(sid=sid,
                                      value=value,
                                      name="{} = {}".format(sid, value)))

    ###########################################################################
    # First iteration to parse relevant lines and get the replacement patterns
    ###########################################################################
    parsed_lines = []
    # with open(xpp_file, encoding="utf-8") as f:
    with open(xpp_file) as f:
        lines = f.readlines()

        # add info to sbml
        text = escape_string("".join(lines))
        fac.set_notes(model, NOTES.format(text))

        old_line = None
        for line in lines:
            if force_lower:
                line = line.lower()

            # clean up the ends
            line = line.rstrip("\n").strip()
            # handle douple continuation characters in some models
            line = line.replace("\\\\", "\\")
            # handle semicolons
            line = line.rstrip(";")

            # join continuation
            if old_line:
                line = old_line + line
                old_line = None

            # empty line
            if len(line) == 0:
                continue
            # comment line
            if line[0] in XPP_COMMENT_CHARS:
                continue
            # xpp setting
            if line.startswith(XPP_SETTING_CHAR):
                continue
            # end word
            if line == XPP_END_WORD:
                continue
            # line continuation
            if line.endswith(XPP_CONTINUATION_CHAR):
                old_line = line.rstrip(XPP_CONTINUATION_CHAR)
                continue

            # handle the power function
            line = line.replace("**", "^")

            # handle if(...)then(...)else()
            pattern_ite = re.compile(
                r"if\s*\((.*)\)\s*then\s*\((.*)\)\s*else\s*\((.*)\)")
            pattern_ite_sub = re.compile(
                r"if\s*\(.*\)\s*then\s*\(.*\)\s*else\s*\(.*\)")
            groups = re.findall(pattern_ite, line)
            for group in groups:
                condition = group[0]
                assignment = group[1]
                otherwise = group[2]
                f_piecewise = "piecewise({}, {}, {})".format(
                    assignment, condition, otherwise)
                line = re.sub(pattern_ite_sub, f_piecewise, line)

            ################################
            # Function definitions
            ################################
            """ Functions are defined in xpp via fid(arguments) = formula
            f(x,y) = x^2/(x^2+y^2)
            They can have up to 9 arguments.
            The difference to SBML functions is that xpp functions have access to the global parameter values
            """
            f_pattern = re.compile(r"(.*)\s*\((.*)\)\s*=\s*(.*)")
            groups = re.findall(f_pattern, line)
            if groups:
                # function definitions found
                fid, args, formula = groups[0]
                # handles the initial assignments which look like function definitions
                if args == "0":
                    parsed_lines.append(line)
                    continue

                # necessary to find the additional arguments from the ast_node
                ast = libsbml.parseL3Formula(formula)
                names = set(xpp_helpers.find_names_in_ast(ast))
                old_args = [t.strip() for t in args.split(",")]
                new_args = [a for a in names if a not in old_args]

                # handle special functions
                if fid == "power":
                    warnings.warn(
                        "power function cannot be added to model, rename function."
                    )
                else:
                    # store functions with additional arguments
                    function_definitions.append({
                        "fid": fid,
                        "old_args": old_args,
                        "new_args": new_args,
                        "formula": formula,
                    })
                # don't append line, function definition has been handeled
                continue

            parsed_lines.append(line)
    if debug:
        print("\n\nFUNCTION_DEFINITIONS")
        pprint(function_definitions)

    # functions can use functions so this also must be replaced
    changes = True
    while changes:
        changes = replace_fdef()

    # clean the new arguments
    for fdata in function_definitions:
        fdata["new_args"] = list(sorted(set(fdata["new_args"])))

    if debug:
        print("\nREPLACED FUNCTION_DEFINITIONS")
        pprint(function_definitions)

    # Create function definitions
    for k, fdata in enumerate(function_definitions):
        fid = fdata["fid"]
        formula = fdata["formula"]
        arguments = ",".join(fdata["old_args"] + fdata["new_args"])
        functions.append(
            fac.Function(fid, "lambda({}, {})".format(arguments, formula)), )

    ###########################################################################
    # Second iteration
    ###########################################################################
    if debug:
        print("\nPARSED LINES")
        pprint(parsed_lines)
        print("\n\n")
    for line in parsed_lines:

        # replace function definitions in lines
        new_line = line
        for fdata in function_definitions:
            new_line = xpp_helpers.replace_formula(new_line, fdata["fid"],
                                                   fdata["old_args"],
                                                   fdata["new_args"])

        if new_line != line:
            if False:
                print("\nReplaced FD", fdata["fid"], ":", new_line)
                print("->", new_line, "\n")
            line = new_line

        if debug:
            # line after function replacements
            print("*" * 3, line, "*" * 3)

        ################################
        # Start parsing the given line
        ################################
        # check for the equal sign
        tokens = line.split("=")
        tokens = [t.strip() for t in tokens]

        #######################
        # Line without '=' sign
        #######################
        # wiener
        if len(tokens) == 1:
            items = [t.strip() for t in tokens[0].split(" ") if len(t) > 0]
            # keyword, value
            if len(items) == 2:
                xid, sid = items[0], items[1]
                xpp_type = parse_keyword(xid)

                # wiener
                if xpp_type == XPP_WIE:
                    """Wiener parameters are normally distributed numbers with zero mean
                    and unit standard deviation. They are useful in stochastic simulations since
                    they automatically scale with change in the integration time step.
                    Their names are listed separated by commas or spaces."""
                    # FIXME: this should be encoded using dist
                    parameters.append(fac.Parameter(sid=sid, value=0.0))
                    continue  # line finished
            else:
                warnings.warn("XPP line not parsed: '{}'".format(line))

        #####################
        # Line with '=' sign
        #####################
        # parameter, aux, ode, initial assignments
        elif len(tokens) >= 2:
            left = tokens[0]
            items = [t.strip() for t in left.split(" ") if len(t) > 0]
            # keyword based information, i.e 2 items are on the left of the first '=' sign
            if len(items) == 2:
                xid = items[0]  # xpp keyword
                xpp_type = parse_keyword(xid)
                expression = (" ".join(items[1:]) + "=" + "=".join(tokens[1:])
                              )  # full expression after keyword
                parts = parts_from_expression(expression)
                if False:
                    print("xid:", xid)
                    print("expression:", expression)
                    print("parts:", parts)

                # parameter & numbers
                if xpp_type in [XPP_PAR, XPP_NUM]:
                    """Parameter values are optional; if not they are set to zero.
                    Number declarations are like parameter declarations, except that they cannot be
                    changed within the program and do not appear in the parameter window."""
                    for part in parts:
                        sid, value = sid_value_from_part(part)
                        create_initial_assignment(sid, value)

                # aux
                elif xpp_type == XPP_AUX:
                    """Auxiliary quantities are expressions that depend on all of your dynamic
                    variables which you want to keep track of. Energy is one such example. They are declared
                    like fixed quantities, but are prefaced by aux ."""
                    for part in parts:
                        sid, value = sid_value_from_part(part)
                        if sid == value:
                            # avoid circular dependencies (no information in statement)
                            pass
                        else:
                            assignment_rules.append(
                                fac.AssignmentRule(sid=sid, value=value))

                # init
                elif xpp_type == XPP_INIT:
                    for part in parts:
                        sid, value = sid_value_from_part(part)
                        create_initial_assignment(sid, value)

                # table
                elif xpp_type == XPP_TAB:
                    """The Table declaration allows the user to specify a function of 1 variable in terms
                    of a lookup table which uses linear interpolation. The name of the function follows the
                    declaration and this is followed by (i) a filename (ii) or a function of "t"."""
                    warnings.warn(
                        "XPP_TAB not supported: XPP line not parsed: '{}'".
                        format(line))

                else:
                    warnings.warn("XPP line not parsed: '{}'".format(line))

            elif len(items) >= 2:
                xid = items[0]
                xpp_type = parse_keyword(xid)
                # global
                if xpp_type == XPP_GLO:
                    """Global flags are expressions that signal events when they change sign, from less than
                    to greater than zero if sign=1 , greater than to less than if sign=-1 or either way
                    if sign=0. The condition should be delimited by braces {} The events are of the form
                    variable=expression, are delimited by braces, and separated by semicolons. When the
                    condition occurs all the variables in the event set are changed possibly discontinuously.
                    """

                    # global sign {condition} {name1 = form1; ...}
                    pattern_global = re.compile(
                        r"([+,-]{0,1}\d{1})\s+\{{0,1}(.*)\{{0,1}\s+\{(.*)\}")
                    groups = re.findall(pattern_global, line)
                    if groups:
                        g = groups[0]
                        sign = int(g[0])
                        trigger = g[1]
                        # FIXME: handle sign=-1, sign=0, sign=+1
                        if sign == -1:
                            trigger = g[1] + ">= 0"
                        elif sign == 1:
                            trigger = g[1] + ">= 0"
                        elif sign == 0:
                            trigger = g[1] + ">= 0"

                        assignment_parts = [t.strip() for t in g[2].split(";")]
                        assignments = {}
                        for p in assignment_parts:
                            key, value = p.split("=")
                            assignments[key] = value

                        events.append(
                            fac.Event(
                                sid="e{}".format(len(events)),
                                trigger=trigger,
                                assignments=assignments,
                            ))

                    else:
                        warnings.warn(
                            "global expression could not be parsed: {}".format(
                                line))
                else:
                    warnings.warn("XPP line not parsed: '{}'".format(line))

            # direct assignments
            elif len(items) == 1:
                right = tokens[1]

                # init
                if left.endswith("(0)"):
                    sid, value = left[0:-3], right
                    create_initial_assignment(sid, value)

                # difference equations
                elif left.endswith("(t+1)"):
                    warnings.warn(
                        "Difference Equations not supported: XPP line not parsed: '{}'"
                        .format(line))

                # ode
                elif left.endswith("'"):
                    sid = left[0:-1]
                    rate_rules.append(fac.RateRule(sid=sid, value=right))
                elif left.endswith("/dt"):
                    sid = left[1:-3]
                    rate_rules.append(fac.RateRule(sid=sid, value=right))
                # assignment rules
                else:
                    assignment_rules.append(
                        fac.AssignmentRule(sid=left, value=right))
            else:
                warnings.warn("XPP line not parsed: '{}'".format(line))

    # add time
    assignment_rules.append(
        fac.AssignmentRule(sid="t", value="time", name="model time"))

    # create SBML objects
    objects = (parameters + initial_assignments + functions + rate_rules +
               assignment_rules + events)
    fac.create_objects(model, obj_iter=objects, debug=False)
    """
    Parameter values are optional; if not they are set to zero in xpp.
    Many models do not encode the initial zeros.
    """
    for p in doc.getModel().getListOfParameters():
        if not p.isSetValue():
            p.setValue(0.0)

    sbml.write_sbml(
        doc,
        sbml_file,
        validate=validate,
        program_name="sbmlutils",
        program_version=__version__,
        units_consistency=False,
    )
Exemple #14
0
        mc.AssignmentRule(f'C{s.sid[1:]}', f'{s.sid}/{s.compartment}',
                          'mM', name=f'{s.name} concentration ({s.compartment})'),
    )

##############################################################
# Reactions
##############################################################
reactions = [

    ReactionTemplate(
        rid="GLCIM",
        name="GLCIM (glc_ext <-> glc)",
        equation="Aext_glc <-> Ali_glc",
        compartment='Vli',
        pars=[
            mc.Parameter('GLCIM_Vmax', 1E3, 'mmole_per_hl',
                         name='Glucose utilization brain'),
            mc.Parameter('GLCIM_Km', 0.1, 'mM'),
        ],
        rules=[],

        formula=(
        "GLCIM_Vmax/GLCIM_Km * Vli * (Cext_glc-Cli_glc)/(1 dimensionless + Cext_glc/GLCIM_Km + Cli_glc/GLCIM_Km)",
        'mmole_per_h'),
    ),

    ReactionTemplate(
        rid="LACIM",
        name="LACIM (lac_ext <-> lac)",
        equation="Aext_lac <-> Ali_lac",
        compartment='Vli',
        pars=[
Exemple #15
0
def top_model(sbml_file, directory, emds, doc_fba, annotations=None):
    """ Create top comp model.

    Creates full comp model by combining fba, update and bounds
    model with additional kinetics in the top model.
    """
    top_notes = notes.format("""
        <h2>TOP model</h2>
        <p>Main comp DFBA model by combining fba, update and bounds
            model with additional kinetics in the top model.</p>
        """)
    working_dir = os.getcwd()
    os.chdir(directory)

    doc = builder.template_doc_top(settings.MODEL_ID, emds)
    model = doc.getModel()
    utils.set_model_info(model,
                         notes=top_notes,
                         creators=creators,
                         units=units,
                         main_units=main_units)

    # dt
    builder.create_dfba_dt(model,
                           step_size=DT_SIM,
                           time_unit=UNIT_TIME,
                           create_port=False)

    # compartment
    compartment_id = "extern"
    builder.create_dfba_compartment(model,
                                    compartment_id=compartment_id,
                                    unit_volume=UNIT_VOLUME,
                                    create_port=False)

    # dynamic species
    model_fba = doc_fba.getModel()
    builder.create_dfba_species(model,
                                model_fba,
                                compartment_id=compartment_id,
                                hasOnlySubstanceUnits=True,
                                unit_amount=UNIT_AMOUNT,
                                create_port=False)
    # dummy species
    builder.create_dummy_species(model,
                                 compartment_id=compartment_id,
                                 hasOnlySubstanceUnits=True,
                                 unit_amount=UNIT_AMOUNT)

    # exchange flux bounds
    builder.create_exchange_bounds(model,
                                   model_fba=model_fba,
                                   unit_flux=UNIT_FLUX,
                                   create_ports=False)

    # dummy reactions & flux assignments
    builder.create_dummy_reactions(model,
                                   model_fba=model_fba,
                                   unit_flux=UNIT_FLUX)

    # replacedBy (fba reactions)
    builder.create_top_replacedBy(model, model_fba=model_fba)

    # replaced
    builder.create_top_replacements(model,
                                    model_fba,
                                    compartment_id=compartment_id)

    # initial concentrations for fba exchange species
    initial_c = {
        'A': 10.0,
        'C': 0.0,
    }
    for sid, value in initial_c.items():
        species = model.getSpecies(sid)
        species.setInitialConcentration(value)

    # kinetic model
    mc.create_objects(
        model,
        [
            # kinetic species
            mc.Species(sid='D',
                       initialConcentration=0,
                       substanceUnit=UNIT_AMOUNT,
                       hasOnlySubstanceUnits=True,
                       compartment="extern"),

            # kinetic
            mc.Parameter(sid="k_R4",
                         value=0.1,
                         constant=True,
                         unit="per_s",
                         sboTerm="SBO:0000009"),

            # bounds parameter
            mc.Parameter(sid='ub_R1',
                         value=1.0,
                         unit=UNIT_FLUX,
                         constant=False,
                         sboTerm="SBO:0000625"),
        ])
    # kinetic reaction (MMK)
    mc.create_reaction(model,
                       rid="R4",
                       name="R4: C -> D",
                       fast=False,
                       reversible=False,
                       reactants={"C": 1},
                       products={"D": 1},
                       formula="k_R4*C",
                       compartment="extern")

    # kinetic flux bounds
    comp.replace_elements(model,
                          'ub_R1',
                          ref_type=comp.SBASE_REF_TYPE_PORT,
                          replaced_elements={
                              'bounds': ['ub_R1_port'],
                              'fba': ['ub_R1_port']
                          })

    # write SBML file
    if annotations:
        annotator.annotate_sbml_doc(doc, annotations)
    sbml.write_sbml(doc,
                    filepath=os.path.join(directory, sbml_file),
                    validate=True)

    # change back the working dir
    os.chdir(working_dir)
Exemple #16
0
def fba_model(sbml_file, directory, annotations=None):
    """ FBA model
    
    :param sbml_file: output file name 
    :param directory: output directory
    :return: SBMLDocument
    """
    fba_notes = notes.format("""
    <h2>FBA submodel</h2>
    <p>DFBA fba submodel. Unbalanced metabolites are encoded via exchange fluxes.</p>
    """)
    doc = builder.template_doc_fba(settings.MODEL_ID)
    model = doc.getModel()
    utils.set_model_info(model,
                         notes=fba_notes,
                         creators=creators,
                         units=units,
                         main_units=main_units)

    objects = [
        # compartments
        mc.Compartment(sid='extern',
                       value=1.0,
                       unit=UNIT_VOLUME,
                       constant=True,
                       name='external compartment',
                       spatialDimensions=3),
        mc.Compartment(sid='cell',
                       value=1.0,
                       unit=UNIT_VOLUME,
                       constant=True,
                       name='cell',
                       spatialDimensions=3),
        mc.Compartment(sid='membrane',
                       value=1.0,
                       unit=UNIT_AREA,
                       constant=True,
                       name='membrane',
                       spatialDimensions=2),

        # exchange species
        mc.Species(sid='A',
                   name="A",
                   initialConcentration=0,
                   substanceUnit=UNIT_AMOUNT,
                   hasOnlySubstanceUnits=True,
                   compartment="extern"),
        mc.Species(sid='C',
                   name="C",
                   initialConcentration=0,
                   substanceUnit=UNIT_AMOUNT,
                   hasOnlySubstanceUnits=True,
                   compartment="extern"),

        # internal species
        mc.Species(sid='B1',
                   name="B1",
                   initialConcentration=0,
                   substanceUnit=UNIT_AMOUNT,
                   hasOnlySubstanceUnits=True,
                   compartment="cell"),
        mc.Species(sid='B2',
                   name="B2",
                   initialConcentration=0,
                   substanceUnit=UNIT_AMOUNT,
                   hasOnlySubstanceUnits=True,
                   compartment="cell"),

        # bounds
        mc.Parameter(sid="ub_R1",
                     value=1.0,
                     unit=UNIT_FLUX,
                     constant=True,
                     sboTerm=builder.FLUX_BOUND_SBO),
        mc.Parameter(sid="zero",
                     value=0.0,
                     unit=UNIT_FLUX,
                     constant=True,
                     sboTerm=builder.FLUX_BOUND_SBO),
        mc.Parameter(sid="ub_default",
                     value=builder.UPPER_BOUND_DEFAULT,
                     unit=UNIT_FLUX,
                     constant=True,
                     sboTerm=builder.FLUX_BOUND_SBO),
    ]
    mc.create_objects(model, objects)

    # reactions
    r1 = mc.create_reaction(model,
                            rid="R1",
                            name="A import (R1)",
                            fast=False,
                            reversible=True,
                            reactants={"A": 1},
                            products={"B1": 1},
                            compartment='membrane')
    r2 = mc.create_reaction(model,
                            rid="R2",
                            name="B1 <-> B2 (R2)",
                            fast=False,
                            reversible=True,
                            reactants={"B1": 1},
                            products={"B2": 1},
                            compartment='cell')
    r3 = mc.create_reaction(model,
                            rid="R3",
                            name="B2 export (R3)",
                            fast=False,
                            reversible=True,
                            reactants={"B2": 1},
                            products={"C": 1},
                            compartment='membrane')

    # flux bounds
    fbc.set_flux_bounds(r1, lb="zero", ub="ub_R1")
    fbc.set_flux_bounds(r2, lb="zero", ub="ub_default")
    fbc.set_flux_bounds(r3, lb="zero", ub="ub_default")

    # exchange reactions
    builder.create_exchange_reaction(model,
                                     species_id="A",
                                     flux_unit=UNIT_FLUX)
    builder.create_exchange_reaction(model,
                                     species_id="C",
                                     flux_unit=UNIT_FLUX)

    # objective function
    model_fbc = model.getPlugin("fbc")
    fbc.create_objective(model_fbc,
                         oid="R3_maximize",
                         otype="maximize",
                         fluxObjectives={"R3": 1.0},
                         active=True)

    # create ports for kinetic bounds
    comp.create_ports(model, portType=comp.PORT_TYPE_PORT, idRefs=["ub_R1"])

    # write SBML
    if annotations:
        annotator.annotate_sbml_doc(doc, annotations)
    sbml.write_sbml(doc,
                    filepath=os.path.join(directory, sbml_file),
                    validate=True)
    return doc
# Compartments
##############################################################
compartments = []

##############################################################
# Species
##############################################################
species = []

##############################################################
# Parameters
##############################################################
parameters = [

    # state variables (initial values)
    mc.Parameter('Gp', 178, 'mg_per_kg', constant=False,
                 name='glucose plasma'),
    mc.Parameter('Gt', 135, 'mg_per_kg', constant=False,
                 name='glucose tissue'),
    mc.Parameter('Il',
                 4.5,
                 'pmol_per_kg',
                 constant=False,
                 name='insulin mass liver'),
    mc.Parameter('Ip',
                 1.25,
                 'pmol_per_kg',
                 constant=False,
                 name='insulin mass plasma'),
    mc.Parameter('Qsto1', 78000, '?', constant=False),
    mc.Parameter('Qsto2', 0, '?', constant=False),
    mc.Parameter('Qgut', 0, '?', constant=False),
Exemple #18
0
def fba_model(sbml_file, directory):
    """ Create FBA submodel.
    """
    # Read the model
    fba_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                            'data/ecoli_fba.xml')
    doc_fba = sbml.read_sbml(fba_path)

    # add comp
    doc_fba.enablePackage(
        "http://www.sbml.org/sbml/level3/version1/comp/version1", "comp", True)
    doc_fba.setPackageRequired("comp", True)

    # add notes
    model = doc_fba.getModel()
    fba_notes = notes.format("""DFBA FBA submodel.""")
    utils.set_model_info(model,
                         notes=fba_notes,
                         creators=None,
                         units=units,
                         main_units=main_units)

    # clip R_ reaction and M_ metabolite prefixes
    utils.clip_prefixes_in_model(model)

    # set id & framework
    model.setId('ecoli_fba')
    model.setName('ecoli (FBA)')
    model.setSBOTerm(comp.SBO_FLUX_BALANCE_FRAMEWORK)

    # add units and information
    for species in model.getListOfSpecies():
        species.setInitialConcentration(0.0)
        species.setHasOnlySubstanceUnits(False)
        species.setUnits(UNIT_AMOUNT)
    for compartment in model.getListOfCompartments():
        compartment.setUnits(UNIT_VOLUME)

    # The ATPM (atp maintainance reactions creates many problems in the DFBA)
    # mainly resulting in infeasible solutions when some metabolites run out.
    # ATP -> ADP is part of the biomass, so we set the lower bound to zero
    r_ATPM = model.getReaction('ATPM')
    r_ATPM_fbc = r_ATPM.getPlugin(builder.SBML_FBC_NAME)
    lb_id = r_ATPM_fbc.getLowerFluxBound()
    model.getParameter(lb_id).setValue(0.0)  # 8.39 before

    # make unique upper and lower bounds for exchange reaction
    if not biomass_weighting:
        builder.update_exchange_reactions(model=model, flux_unit=UNIT_FLUX)
    else:
        builder.update_exchange_reactions(model=model,
                                          flux_unit=UNIT_FLUX_PER_G)

    # add exchange reaction for biomass (X)
    # we are adding the biomass component to the biomass function and create an
    # exchange reaction for it
    r_biomass = model.getReaction('BIOMASS_Ecoli_core_w_GAM')

    # FIXME: refactor in function
    # FIXME: annotate biomass species (SBO for biomass missing)
    mc.create_objects(model, [
        mc.Parameter(sid='cf_X',
                     value=1.0,
                     unit="g_per_mmol",
                     name="biomass conversion factor",
                     constant=True),
        mc.Species(sid='X',
                   initialAmount=0.001,
                   compartment='c',
                   name='biomass',
                   substanceUnit='g',
                   hasOnlySubstanceUnits=True,
                   conversionFactor='cf_X')
    ])

    pr_biomass = r_biomass.createProduct()
    pr_biomass.setSpecies('X')
    pr_biomass.setStoichiometry(1.0)
    pr_biomass.setConstant(True)
    # FIXME: the flux units must fit to the species units.
    if not biomass_weighting:
        builder.create_exchange_reaction(model,
                                         species_id='X',
                                         flux_unit=UNIT_FLUX,
                                         exchange_type=builder.EXCHANGE_EXPORT)
    else:
        builder.create_exchange_reaction(model,
                                         species_id='X',
                                         flux_unit=UNIT_FLUX_PER_G,
                                         exchange_type=builder.EXCHANGE_EXPORT)
    # write SBML file
    sbml.write_sbml(doc_fba,
                    filepath=pjoin(directory, sbml_file),
                    validate=True)

    # Set kinetic laws to zero for kinetic simulation
    '''
    for reaction in model.getListOfReactions():
        ast_node = mc.ast_node_from_formula(model=model, formula='0 {}'.format(UNIT_FLUX))
        law = reaction.createKineticLaw()
        law.setMath(ast_node)
    '''

    return doc_fba
Exemple #19
0
                          f'{s.sid}/{s.compartment}',
                          'mM',
                          name=f'{s.name} concentration ({s.compartment})'), )

##############################################################
# Reactions
##############################################################
reactions = [
    ReactionTemplate(
        rid="GLCIM",
        name="GLCIM (glc_ext <-> glc)",
        equation="Aext_glc <-> Abr_glc",
        compartment='Vbr',
        pars=[
            mc.Parameter('GLCIM_Vmax',
                         1E3,
                         'mmole_per_hl',
                         name='Glucose utilization brain'),
            mc.Parameter('GLCIM_Km', 0.1, 'mM'),
        ],
        rules=[],
        formula=
        ("GLCIM_Vmax/GLCIM_Km * Vbr * (Cext_glc-Cbr_glc)/(1 dimensionless + Cext_glc/GLCIM_Km + Cbr_glc/GLCIM_Km)",
         'mmole_per_h'),
    ),
    ReactionTemplate(
        rid="LACIM",
        name="LACIM (lac_ext <-> lac)",
        equation="Aext_lac <-> Abr_lac",
        compartment='Vbr',
        pars=[
            mc.Parameter('LACIM_Vmax',
Exemple #20
0
"""
from sbmlutils import factory as mc

from sbmlutils.modelcreator.processes import ReactionTemplate

#############################################################################################
#    REACTIONS
#############################################################################################
GLUT2 = ReactionTemplate(
    rid='GLUT2',
    name='GLUT2 glucose transporter',
    equation='Aglc_ext <-> Aglc []',
    # C6H1206 (0) <-> C6H12O6 (0)
    compartment='pm',
    pars=[
        mc.Parameter('GLUT2_keq', 1, 'dimensionless'),
        mc.Parameter('GLUT2_k_glc', 42, 'mM'),
        mc.Parameter('GLUT2_Vmax', 420, 'mmole_per_min'),
    ],
    rules=[],
    formula=('f_gly * (GLUT2_Vmax/GLUT2_k_glc) * (glc_ext - glc/GLUT2_keq)/'
             '(1 dimensionless + glc_ext/GLUT2_k_glc + glc/GLUT2_k_glc)',
             'mmole_per_min'))

GK = ReactionTemplate(
    rid='GK',
    name='Glucokinase',
    equation='Aglc + Aatp => Aglc6p + Aadp + Ah [Aglc1p, Afru6p]',
    # C6H1206 (0) + C10H12N5O13P3 (-4)  <-> C6H11O9P (-2) + C10H12N5O10P2 (-3) + H (1)
    compartment='cyto',
    pars=[
                   unit=UNIT_KIND_LITRE,
                   constant=False,
                   name='venous plasma'),
    mc.Compartment('Vplas_art',
                   value=1,
                   unit=UNIT_KIND_LITRE,
                   constant=False,
                   name='arterial plasma'),
]

##############################################################
# Parameters
##############################################################
parameters = [
    # whole body data
    mc.Parameter('BW', 70, 'kg', constant=True, name='body weight'),
    mc.Parameter('CO',
                 108.33,
                 'ml_per_s',
                 constant=True,
                 name='cardiac output [ml/s]'),
    mc.Parameter('QC',
                 108.33 * 1000 * 60 * 60,
                 'litre_per_h',
                 constant=False,
                 name='cardiac output [L/hr]'),

    # fractional tissue volumes
    mc.Parameter('FVre',
                 0.9049,
                 'litre_per_kg',
def test_modelcreator_notebook():
    """
    If this test fails the respective notebook must be updated:
    :return:
    """

    import libsbml
    from libsbml import (UNIT_KIND_SECOND, UNIT_KIND_ITEM, UNIT_KIND_MOLE,
                         UNIT_KIND_KILOGRAM, UNIT_KIND_METRE, UNIT_KIND_LITRE)

    from sbmlutils import comp
    from sbmlutils import fbc
    from sbmlutils import sbmlio
    from sbmlutils import factory as fac
    from sbmlutils.dfba import builder, utils

    main_units = {
        'time': 's',
        'extent': UNIT_KIND_ITEM,
        'substance': UNIT_KIND_ITEM,
        'length': 'm',
        'area': 'm2',
        'volume': 'm3',
    }
    units = [
        fac.Unit('s', [(UNIT_KIND_SECOND, 1.0)]),
        fac.Unit('item', [(UNIT_KIND_ITEM, 1.0)]),
        fac.Unit('kg', [(UNIT_KIND_KILOGRAM, 1.0)]),
        fac.Unit('m', [(UNIT_KIND_METRE, 1.0)]),
        fac.Unit('m2', [(UNIT_KIND_METRE, 2.0)]),
        fac.Unit('m3', [(UNIT_KIND_METRE, 3.0)]),
        fac.Unit('mM', [(UNIT_KIND_MOLE, 1.0, 0),
                        (UNIT_KIND_METRE, -3.0)]),
        fac.Unit('per_s', [(UNIT_KIND_SECOND, -1.0)]),
        fac.Unit('item_per_s', [(UNIT_KIND_ITEM, 1.0),
                                (UNIT_KIND_SECOND, -1.0)]),
        fac.Unit('item_per_m3', [(UNIT_KIND_ITEM, 1.0),
                                 (UNIT_KIND_METRE, -3.0)]),
    ]

    UNIT_TIME = 's'
    UNIT_AMOUNT = 'item'
    UNIT_AREA = 'm2'
    UNIT_VOLUME = 'm3'
    UNIT_CONCENTRATION = 'item_per_m3'
    UNIT_FLUX = 'item_per_s'

    # Create SBMLDocument with fba
    doc = builder.template_doc_fba(model_id="toy")
    model = doc.getModel()

    utils.set_units(model, units)
    utils.set_main_units(model, main_units)

    objects = [
        # compartments
        fac.Compartment(sid='extern', value=1.0, unit=UNIT_VOLUME, constant=True, name='external compartment',
                        spatialDimensions=3),
        fac.Compartment(sid='cell', value=1.0, unit=UNIT_VOLUME, constant=True, name='cell', spatialDimensions=3),
        fac.Compartment(sid='membrane', value=1.0, unit=UNIT_AREA, constant=True, name='membrane', spatialDimensions=2),

        # exchange species
        fac.Species(sid='A', name="A", value=0, substanceUnit=UNIT_AMOUNT, hasOnlySubstanceUnits=True,
                    compartment="extern"),
        fac.Species(sid='C', name="C", value=0, substanceUnit=UNIT_AMOUNT, hasOnlySubstanceUnits=True,
                    compartment="extern"),

        # internal species
        fac.Species(sid='B1', name="B1", value=0, substanceUnit=UNIT_AMOUNT, hasOnlySubstanceUnits=True,
                    compartment="cell"),
        fac.Species(sid='B2', name="B2", value=0, substanceUnit=UNIT_AMOUNT, hasOnlySubstanceUnits=True,
                    compartment="cell"),

        # bounds
        fac.Parameter(sid="ub_R1", value=1.0, unit=UNIT_FLUX, constant=True, sboTerm=builder.FLUX_BOUND_SBO),
        fac.Parameter(sid="zero", value=0.0, unit=UNIT_FLUX, constant=True, sboTerm=builder.FLUX_BOUND_SBO),
        fac.Parameter(sid="ub_default", value=builder.UPPER_BOUND_DEFAULT, unit=UNIT_FLUX, constant=True,
                      sboTerm=builder.FLUX_BOUND_SBO),
    ]
    fac.create_objects(model, objects)

    # reactions
    r1 = fac.create_reaction(model, rid="R1", name="A import (R1)", fast=False, reversible=True,
                             reactants={"A": 1}, products={"B1": 1}, compartment='membrane')
    r2 = fac.create_reaction(model, rid="R2", name="B1 <-> B2 (R2)", fast=False, reversible=True,
                             reactants={"B1": 1}, products={"B2": 1}, compartment='cell')
    r3 = fac.create_reaction(model, rid="R3", name="B2 export (R3)", fast=False, reversible=True,
                             reactants={"B2": 1}, products={"C": 1}, compartment='membrane')

    # flux bounds
    fbc.set_flux_bounds(r1, lb="zero", ub="ub_R1")
    fbc.set_flux_bounds(r2, lb="zero", ub="ub_default")
    fbc.set_flux_bounds(r3, lb="zero", ub="ub_default")

    # exchange reactions
    builder.create_exchange_reaction(model, species_id="A", flux_unit=UNIT_FLUX)
    builder.create_exchange_reaction(model, species_id="C", flux_unit=UNIT_FLUX)

    # objective function
    model_fbc = model.getPlugin("fbc")
    fac.create_objective(model_fbc, oid="R3_maximize", otype="maximize",
                         fluxObjectives={"R3": 1.0}, active=True)

    # write SBML file
    import tempfile
    sbml_file = tempfile.NamedTemporaryFile(suffix=".xml")
    sbmlio.write_sbml(doc=doc, filepath=sbml_file.name)
Exemple #23
0
    mc.Species('Ah_mito', compartment='mito', initialConcentration=0.0, unit='mmole', boundaryCondition=True, hasOnlySubstanceUnits=True, name='H+'),
])
# ---------------------------------
# Concentration
# ---------------------------------
for s in species:
    aid = s.sid[1:]
    rules.append(
        mc.AssignmentRule(f'{aid}', f'{s.sid}/{s.compartment}', 'mM', name=f'{s.name} concentration'),
    )

##############################################################
# Parameters
##############################################################
parameters.extend([
    mc.Parameter('V_cyto', 1.0, UNIT_KIND_LITRE, True, name='cytosolic volume'),
    mc.Parameter('f_mito', 0.2, 'dimensionless', True, name='mitochondrial volume factor'),
    mc.Parameter('Vliver', 1.5, UNIT_KIND_LITRE, True, name='liver volume'),
    mc.Parameter('fliver', 0.583333333333334, 'dimensionless', True, name='parenchymal fraction liver'),
    mc.Parameter('bodyweight', 70, 'kg', True, name='bodyweight'),

    mc.Parameter('sec_per_min', 60, 's_per_min', True, name='time conversion'),
    mc.Parameter('mumole_per_mmole', 1000, 'mumole_per_mmole', True, name='amount conversion'),

    # hormonal regulation
    mc.Parameter('x_ins1', 818.9, 'pM', True),
    mc.Parameter('x_ins2', 0, 'pM', True),
    mc.Parameter('x_ins3', 8.6, 'mM', True),
    mc.Parameter('x_ins4', 4.2, 'dimensionless', True),

    mc.Parameter('x_glu1', 190, 'pM', True),