def import_bot_instance( raw_game_data: Response, raw_game_info: Response, raw_observation: ResponseObservation, ) -> BotAI: """ import_bot_instance DocString """ bot = BotAI() game_data = GameData(raw_game_data.data) game_info = GameInfo(raw_game_info.game_info) game_state = GameState(raw_observation) # noinspection PyProtectedMember bot._initialize_variables() # noinspection PyProtectedMember bot._prepare_start( client=None, player_id=1, game_info=game_info, game_data=game_data ) # noinspection PyProtectedMember bot._prepare_first_step() # noinspection PyProtectedMember bot._prepare_step(state=game_state, proto_game_info=raw_game_info) # noinspection PyProtectedMember bot._find_expansion_locations() return bot
def get_map_specific_bot(map_path: Path) -> BotAI: assert map_path in MAPS with lzma.open(str(map_path.absolute()), "rb") as f: raw_game_data, raw_game_info, raw_observation = pickle.load(f) # Build fresh bot object, and load the pickle'd data into the bot object bot = BotAI() game_data = GameData(raw_game_data.data) game_info = GameInfo(raw_game_info.game_info) game_state = GameState(raw_observation) bot._initialize_variables() bot._prepare_start(client=None, player_id=1, game_info=game_info, game_data=game_data) bot._prepare_step(state=game_state, proto_game_info=raw_game_info) return bot
def get_map_specific_bots() -> Iterable[BotAI]: folder = os.path.dirname(__file__) subfolder_name = "pickle_data" pickle_folder_path = os.path.join(folder, subfolder_name) files = os.listdir(pickle_folder_path) for file in (f for f in files if f.endswith(".xz")): with lzma.open(os.path.join(folder, subfolder_name, file), "rb") as f: raw_game_data, raw_game_info, raw_observation = pickle.load(f) # Build fresh bot object, and load the pickle'd data into the bot object bot = BotAI() game_data = GameData(raw_game_data.data) game_info = GameInfo(raw_game_info.game_info) game_state = GameState(raw_observation) bot._initialize_variables() bot._prepare_start(client=None, player_id=1, game_info=game_info, game_data=game_data) bot._prepare_step(state=game_state, proto_game_info=raw_game_info) yield bot
class Creeper: """Spread creep.""" def __init__( self, raw_game_data: Any, raw_game_info: Any, raw_observation: Any ) -> None: """ Set up variables for use within Creeper. Args: raw_game_data (Any): self.game_data from main instance raw_game_info (Any): self.game_info from main instance raw_observation (Any): self.game_state from main instance Returns: None """ self.bot = BotAI() game_data = GameData(raw_game_data.data) game_info = GameInfo(raw_game_info.game_info) game_state = GameState(raw_observation) self.bot._initialize_variables() self.bot._prepare_start( client=None, player_id=1, game_info=game_info, game_data=game_data ) self.bot._prepare_step(state=game_state, proto_game_info=raw_game_info) self.pathing = PathManager(raw_game_data, raw_game_info, raw_observation) self.pf = PathFind(self.pathing.map_grid) def check_tumor_position( self, possible_position: Point2, combined_grid: Any ) -> int: """ Calculate the number of tiles the tumor position would cover. Arg: possible_position (Point2): the point being checked. combined_grid (Any): ndarray that's the pathfinding lib's path map and the creep map added together Returns: int: the number of tiles that would be covered. """ x, y = floor(possible_position[0]), floor(possible_position[1]) future_tiles = 0 for i in range(-10, 11): for j in range(-10, 11): if 8 <= abs(j) <= 10: if abs(i) <= 6 - 2 * (abs(j) - 8): future_tiles += combined_grid[Point2((x + i, y + j))] % 2 elif abs(j) == 7: if abs(i) <= 7: future_tiles += combined_grid[Point2((x + i, y + j))] % 2 elif 3 <= abs(j) <= 6: if abs(i) <= 9 - floor(abs(j) / 5): future_tiles += combined_grid[Point2((x + i, y + j))] % 2 else: if combined_grid[Point2((x + i, y + j))] == 1: future_tiles += 1 return future_tiles async def find_position( self, tumor: Unit, tumor_positions: Set[Point2], creep_grid: Any, pathable_map: Any, ) -> Point2: """ Find the location to spread the tumor to. Args: tumor (Unit): the creep tumor ready to be spread tumor_positions (Set[Point2]): list of existing tumor locations creep_grid (ndarray): the creep grid from the main bot pathable_map (ndarray): the pathfinding lib's pathable map Returns: Point2: where to spread the tumor. """ path_creep_map = creep_grid + pathable_map tposx, tposy = tumor.position.x, tumor.position.y max_tiles = 0 location = None for i in range(-10, 11): for j in range(-10, 11): if 81 <= i ** 2 + j ** 2 <= 105: pos = Point2((tposx + i, tposy + j)) if pos not in tumor_positions: if path_creep_map[floor(pos[0])][floor(pos[1])] != 2: continue tiles = self.check_tumor_position((pos), path_creep_map) if tiles > max_tiles: max_tiles = tiles location = pos if max_tiles < 75: floored_unit_pos = Point2((floor(tposx), floor(tposy))) floored_e_base = Point2( ( floor(self.bot.enemy_start_locations[0].position.x), floor(self.bot.enemy_start_locations[0].position.y), ) ) path_to_e_base = self.pf.find_path(floored_unit_pos, floored_e_base)[0] if path_to_e_base: for k in range(9, 5, -1): pos = path_to_e_base[k] if path_creep_map[pos[0]][pos[1]] == 2: location = Point2(pos) break if location: return location else: return tumor.position
class PathManager: """Manage unit pathing.""" def __init__( self, raw_game_data: Any, raw_game_info: Any, raw_observation: Any ) -> None: """ Set up variables for use within PathMangager. Args: raw_game_data (Any): self.game_data from main instance raw_game_info (Any): self.game_info from main instance raw_observation (Any): self.game_state from main instance Returns: None """ self.bot = BotAI() game_data = GameData(raw_game_data.data) game_info = GameInfo(raw_game_info.game_info) game_state = GameState(raw_observation) self.bot._initialize_variables() self.bot._prepare_start( client=None, player_id=1, game_info=game_info, game_data=game_data ) self.bot._prepare_step(state=game_state, proto_game_info=raw_game_info) map_name = game_info.map_name self.pathing_dict: Dict[int, PathDict] = {} map_width = game_info.map_size.width map_height = game_info.map_size.height raw_grid = np.zeros((map_width, map_height)) for x in range(map_width): for y in range(map_height): pos = Point2((x, y)) raw_grid[x][y] = game_info.pathing_grid[pos] self.map_grid = np.rot90(raw_grid.astype(int)) np.save(f"map_grids/{map_name}_grid", self.map_grid) self.pf = PathFind(self.map_grid) def add_to_path_dict(self, unit: Unit, destination: Point2) -> None: """ Add unit's path to the path storage dictionary. Args: unit (Unit): the unit for pathing destination (Point2): where the unit is going Returns: None """ self.pathing_dict[unit.tag] = {"path": [], "step": 0} raw_unit_pos = unit.position floored_unit_pos = Point2((floor(raw_unit_pos.x), floor(raw_unit_pos.y))) floored_dest = Point2((floor(destination[0]), floor(destination[1]))) self.pathing_dict[unit.tag]["path"] = self.pf.find_path( floored_unit_pos, floored_dest )[0] def follow_path(self, unit: Unit, default: Point2) -> Point2: """ Follow the path set or set a new one if none exists. Args: unit (Unit): the unit moving Returns: Point2: the location to attack """ if ( len( self.bot.structures.filter( lambda unit: unit.type_id in {UnitTypeId.NYDUSNETWORK, UnitTypeId.NYDUSCANAL} ) ) < 2 ): if unit.tag not in self.pathing_dict: self.add_to_path_dict(unit, tuple(default)) advance_factor = int(unit.movement_speed) + 2 self.pathing_dict[unit.tag]["step"] += advance_factor curr_step = self.pathing_dict[unit.tag]["step"] if curr_step >= len(self.pathing_dict[unit.tag]["path"]): curr_step = len(self.pathing_dict[unit.tag]["path"]) - 1 if curr_step < 0: return default a_move_to = Point2(self.pathing_dict[unit.tag]["path"][curr_step]) if curr_step == len(self.pathing_dict[unit.tag]["path"]) - 1: del self.pathing_dict[unit.tag] return a_move_to