Exemple #1
0
from __future__ import print_function

import setup
from os.path import join
from dev_stages import dev_stages
from scalers import LogScaler
from project_dirs import results_dir

filename = join(results_dir(), 'dev-stages.txt')
with open(filename, 'w') as f:
    scaler = LogScaler()
    header = '{:<30} {:<8} {:<10} {:<10}'.format('Full Name', 'Label', 'Age',
                                                 'Log Scale')
    print(header, file=f)
    print(len(header) * '-', file=f)
    for stage in dev_stages:
        name = stage.name
        short_name = stage.short_name
        age = stage.central_age
        log_age = stage.scaled(scaler).central_age
        print('{:<30} {:<8} {:<10.3g} {:<10.3g}'.format(
            name, short_name, age, log_age),
              file=f)
Exemple #2
0
                       fontsize=xtick_fontsize,
                       fontstretch='condensed',
                       rotation=90)

    # set y ticks (first and last only)
    ax.set_ylabel('expression level', fontsize=fontsize)
    ticks = ax.get_yticks()
    ticks = np.array([ticks[0], ticks[-1]])
    ax.set_yticks(ticks)
    ax.set_yticklabels(['{:g}'.format(t) for t in ticks], fontsize=fontsize)

    return fig


cfg.verbosity = 1
age_scaler = LogScaler()

data = GeneData.load('both').scale_ages(age_scaler)

shapes = [
    Sigmoid('sigmoid_wide'),
    Poly(1, 'poly1'),
    Poly(3, 'poly3'),
    Spline()
]
GRs = [
    ('ADRB1', 'A1C', (5, 8)),
    ('GLRA2', 'STC', (5, 12)),
    ('TUBA1A', 'V1C', (10, 14)),
]
Exemple #3
0
import setup
from load_data import load_data
import numpy as np
import scipy as sp
import matplotlib as mpl
import matplotlib.pyplot as plt
from plots import *
from all_fits import *
import config as cfg
from fitter import Fitter
from shapes.sigmoid import Sigmoid
from shapes.spline import Spline
from scalers import LogScaler

cfg.verbosity = 1
data = load_data(pathway='serotonin', scaler=LogScaler())
series = data.get_one_series('HTR1A', 'MD')
x = series.ages
y = series.single_expression
fitter = Fitter(Spline())
theta, sigma, LOO_predictions, _ = fitter.fit(x, y)
spline = theta[0]
preds = spline(x)
print preds