Exemple #1
0
    def execute(self, *input_columns) -> bytes:
        bboxes_list = []
        for c in input_columns:
            bboxes_list += readers.bboxes(c, self._config.protobufs)

        nmsed_bboxes = bboxes.nms(bboxes_list, self._threshold)
        return writers.bboxes(nmsed_bboxes, self._config.protobufs)
Exemple #2
0
 def compute_exemplar():
     img = cv2.imread(exemplar)
     with Database() as db:
         bboxes = [db.protobufs.BoundingBox(x1=0, y1=0, x2=img.shape[1], y2=img.shape[0])]
         kernel = EmbedFaceKernel(None, db.protobufs)
         [emb] = kernel.execute(
             [cv2.cvtColor(img, cv2.COLOR_RGB2BGR),
              writers.bboxes([bboxes], db.protobufs)[0]])
         return np.frombuffer(emb, dtype=np.float32)
def bboxes_from_json(config, bboxes: bytes) -> bytes:
    dilate = config.args['dilate'] if 'dilate' in config.args else 1.0
    bboxes = json.loads(bboxes.decode('utf-8'))
    return writers.bboxes([
        config.protobufs.BoundingBox(x1=bb['bbox_x1'] * (2. - dilate),
                                     x2=bb['bbox_x2'] * dilate,
                                     y1=bb['bbox_y1'] * (2. - dilate),
                                     y2=bb['bbox_y2'] * dilate)
        for bb in bboxes
    ], config.protobufs)
Exemple #4
0
    def execute(self, frame: FrameType) -> bytes:
        image_tensor = self.graph.get_tensor_by_name('image_tensor:0')
        boxes = self.graph.get_tensor_by_name('detection_boxes:0')
        scores = self.graph.get_tensor_by_name('detection_scores:0')
        classes = self.graph.get_tensor_by_name('detection_classes:0')
        with self.graph.as_default():
            (boxes, scores, classes) = self.sess.run(
                [boxes, scores, classes],
                feed_dict={image_tensor: np.expand_dims(frame, axis=0)})

            bboxes = [
                self.protobufs.BoundingBox(x1=box[1],
                                           y1=box[0],
                                           x2=box[3],
                                           y2=box[2],
                                           score=score,
                                           label=cls)
                for (box, score, cls) in zip(boxes.reshape(
                    100, 4), scores.reshape(100, 1), classes.reshape(100, 1))
            ]

            return writers.bboxes(bboxes, self.protobufs)
Exemple #5
0
 def execute(self, *inputs) -> bytes:
     bboxes_list = []
     for c in inputs:
         bboxes_list += readers.bboxes(c, self.protobufs)
     nmsed_bboxes = bboxes.nms(bboxes_list, 0.1)
     return writers.bboxes(nmsed_bboxes, self.protobufs)
Exemple #6
0
    def execute(self, frame: Sequence[FrameType],
                bboxes: Sequence[bytes]) -> Sequence[bytes]:
        h, w = frame[0].shape[:2]
        all_new_bbs = []
        for fram, bbs in zip(frame, bboxes):
            bbs = readers.bboxes(bbs, self.protobufs)
            new_bbs = []
            for i, bbox in enumerate(bbs):
                x1 = int(bbox.x1 * w)
                y1 = int(bbox.y1 * h)
                x2 = int(bbox.x2 * w)
                y2 = int(bbox.y2 * h)

                ## set crop window
                crop_w = (x2 - x1) * 2
                crop_h = crop_w * 2
                X1 = int((x1 + x2) / 2 - crop_w / 2)
                X2 = X1 + crop_w
                Y1 = int((y1 + y2) / 2 - crop_h / 3)
                Y2 = Y1 + crop_h

                ## adjust box size by image boundary
                crop_x1 = max(0, X1)
                crop_x2 = min(w - 1, X2)
                crop_y1 = max(0, Y1)
                crop_y2 = min(h - 1, Y2)
                cropped = fram[crop_y1:crop_y2 + 1, crop_x1:crop_x2 + 1, :]

                ## compute body bound
                body_bound = 1.0
                for j, other_bbox in enumerate(bbs):
                    if i == j:
                        continue
                    if bbox.y2 < other_bbox.y1:
                        center = (bbox.x1 + bbox.x2) / 2
                        crop_x1 = (center - bbox.x2 + bbox.x1)
                        crop_x2 = (center + bbox.x2 - bbox.x1)
                        if other_bbox.x1 < crop_x2 or other_bbox.x2 > crop_x1:
                            body_bound = other_bbox.y1

                ## detect edge and text
                neck_line = y2 - crop_y1
                body_bound = int(body_bound * h) - crop_y1
                crop_y = self.detect_edge_text(cropped, neck_line)
                crop_y = min(crop_y, body_bound)

                def inbound(coord, limit):
                    return 0 <= int(coord) and int(coord) < limit

                # If we produce a malformed bbox then just use the original bbox.
                if abs(crop_x1 - crop_x2) < 20 or abs(crop_y1 - crop_y) < 20 \
                   or crop_x1 >= crop_x2 or crop_y1 >= crop_y \
                   or not inbound(crop_x1, w) or not inbound(crop_x2, w) \
                   or not inbound(crop_y1, h) or not inbound(crop_y, h):
                    new_bbs.append(bbox)
                else:
                    new_bbs.append(
                        self.protobufs.BoundingBox(x1=crop_x1 / w,
                                                   x2=crop_x2 / w,
                                                   y1=crop_y1 / h,
                                                   y2=crop_y / h))

            all_new_bbs.append(writers.bboxes(new_bbs, self.protobufs))
        return all_new_bbs
Exemple #7
0
 def execute(self, input_columns):
     bboxes_list = []
     for c in input_columns:
         bboxes_list += parsers.bboxes(c, self.protobufs)
     nmsed_bboxes = bboxes.nms(bboxes_list, 0.1)
     return writers.bboxes([nmsed_bboxes], self.protobufs)