Exemple #1
0
    def __init__(self,
                 term_doc_matrix,
                 verbose=False,
                 **kwargs):
        '''
        Parameters
        ----------
        term_doc_matrix: term document matrix to create chart from

        Remaining parameters are from ScatterChartData
        '''
        self.term_doc_matrix = term_doc_matrix
        self.scatterchartdata = ScatterChartData(**kwargs)
        self.x_coords = None
        self.y_coords = None
        self.original_x = None
        self.original_y = None
        self._rescale_x = None
        self._rescale_y = None
        self.used = False
        self.metadata_term_lists = None
        self.metadata_descriptions = None
        self.term_colors = None
        self.hidden_terms = None
        self.verbose = verbose
Exemple #2
0
	def __init__(self,
	             term_doc_matrix,
	             **kwargs):
		'''
		Parameters
		----------
		term_doc_matrix: term document matrix to create chart from

		Remaining parameters are from ScatterChartData
		'''
		self.term_doc_matrix = term_doc_matrix
		self.scatterchartdata = ScatterChartData(**kwargs)
		self.x_coords = None
		self.y_coords = None
		self.original_x = None
		self.original_y = None
		self._rescale_x = None
		self._rescale_y = None
		self.used = False
Exemple #3
0
 def test_get_term_category_frequencies(self):
     df = self.term_cat_freq.get_term_category_frequencies(
         ScatterChartData())
     self.assertEqual(len(df), self.term_cat_freq.get_num_terms())
     self.assertEqual(set(df.columns), {'democrat freq', 'republican freq'})
     self.assertEqual(df.index.name, 'term')
Exemple #4
0
class ScatterChart:
    def __init__(self,
                 term_doc_matrix,
                 verbose=False,
                 **kwargs):
        '''
        Parameters
        ----------
        term_doc_matrix: term document matrix to create chart from

        Remaining parameters are from ScatterChartData
        '''
        self.term_doc_matrix = term_doc_matrix
        self.scatterchartdata = ScatterChartData(**kwargs)
        self.x_coords = None
        self.y_coords = None
        self.original_x = None
        self.original_y = None
        self._rescale_x = None
        self._rescale_y = None
        self.used = False
        self.metadata_term_lists = None
        self.metadata_descriptions = None
        self.term_colors = None
        self.hidden_terms = None
        self.verbose = verbose

    def inject_metadata_term_lists(self, term_dict):
        '''
        Inserts dictionary of meta data terms into object.

        Parameters
        ----------
        term_dict: dict {metadataname: [term1, term2, ....], ...}

        Returns
        -------
        self: ScatterChart
        '''
        check_topic_model_string_format(term_dict)

        if not self.term_doc_matrix.metadata_in_use():
            raise TermDocMatrixHasNoMetadataException("No metadata is present in the term document matrix")

        self.metadata_term_lists = term_dict
        return self

    def inject_metadata_descriptions(self, term_dict):
        '''
        Inserts a set of descriptions of meta data terms.  These will be displayed
        below the scatter plot when a meta data term is clicked. All keys in the term dict
        must occur as meta data.

        Parameters
        ----------
        term_dict: dict {metadataname: str: 'explanation to insert', ...}

        Returns
        -------
        self: ScatterChart
        '''
        assert type(term_dict) == dict
        if not self.term_doc_matrix.metadata_in_use():
            raise TermDocMatrixHasNoMetadataException("No metadata is present in the term document matrix")
        # This doesn't seem necessary. If a definition's not in the corpus, it just won't be shown.
        # if set(term_dict.keys()) - set(self.term_doc_matrix.get_metadata()) != set():
        #    raise Exception('The following meta data terms are not present: '
        #                    + ', '.join(list(set(term_dict.keys()) - set(self.term_doc_matrix.get_metadata()))))

        if sys.version_info[0] == 2:
            assert set([type(v) for v in term_dict.values()]) - set([str, unicode]) == set()
        else:
            assert set([type(v) for v in term_dict.values()]) - set([str]) == set()

        self.metadata_descriptions = term_dict
        return self

    def inject_term_colors(self, term_to_color_dict):
        '''

        :param term_to_color_dict: dict, mapping a term to a color
        :return: self
        '''

        self.term_colors = term_to_color_dict

    def inject_coordinates(self,
                           x_coords,
                           y_coords,
                           rescale_x=None,
                           rescale_y=None,
                           original_x=None,
                           original_y=None):
        '''
        Inject custom x and y coordinates for each term into chart.

        Parameters
        ----------
        x_coords: array-like
            positions on x-axis \in [0,1]
        y_coords: array-like
            positions on y-axis \in [0,1]
        rescale_x: lambda list[0,1]: list[0,1], default identity
            Rescales x-axis after filtering
        rescale_y: lambda list[0,1]: list[0,1], default identity
            Rescales y-axis after filtering
        original_x : array-like, optional
            Original, unscaled x-values.  Defaults to x_coords
        original_y : array-like, optional
            Original, unscaled y-values.  Defaults to y_coords
        Returns
        -------
        self: ScatterChart

        '''
        self._verify_coordinates(x_coords, 'x')
        self._verify_coordinates(y_coords, 'y')
        self.x_coords = x_coords
        self.y_coords = y_coords
        self._rescale_x = rescale_x
        self._rescale_y = rescale_y
        self.original_x = x_coords if original_x is None else original_x
        self.original_y = y_coords if original_y is None else original_y

    def _verify_coordinates(self, coords, name):
        if self.scatterchartdata.use_non_text_features and len(coords) != len(self.term_doc_matrix.get_metadata()):
            raise CoordinatesNotRightException("Length of %s_coords must be the same as the number "
                                               "of non-text features in the term_doc_matrix." % (name))
        if not self.scatterchartdata.use_non_text_features and len(coords) != self.term_doc_matrix.get_num_terms():
            raise CoordinatesNotRightException("Length of %s_coords must be the same as the number "
                                               "of terms in the term_doc_matrix." % (name))
        if max(coords) > 1:
            raise CoordinatesNotRightException("Max value of %s_coords must be <= 1." % (name))
        if min(coords) < 0:
            raise CoordinatesNotRightException("Min value of %s_coords must be >= 0." % (name))

    def hide_terms(self, terms):
        '''
        Mark terms which won't be displayed in the visualization.

        :param terms: iter[str]
            Terms to mark as hidden.
        :return: ScatterChart
        '''
        self.hidden_terms = set(terms)
        return self

    def to_dict(self,
                category,
                category_name=None,
                not_category_name=None,
                scores=None,
                transform=percentile_alphabetical,
                title_case_names=False,
                not_categories=None,
                neutral_categories=None,
                extra_categories=None,
                background_scorer=None,
                **kwargs):
        '''

        Parameters
        ----------
        category : str
            Category to annotate.  Exact value of category.
        category_name : str, optional
            Name of category which will appear on web site. Default None is same as category.
        not_category_name : str, optional
            Name of ~category which will appear on web site. Default None is same as "not " + category.
        scores : np.array, optional
            Scores to use for coloring.  Defaults to None, or RankDifference scores
        transform : function, optional
            Function for ranking terms.  Defaults to scattertext.Scalers.percentile_lexicographic.
        title_case_names : bool, default False
          Title case category name and no-category name?
        not_categories : list, optional
            List of categories to use as "not category".  Defaults to all others.
        neutral_categories : list, optional
            List of categories to use as neutral.  Defaults [].
        extra_categories : list, optional
            List of categories to use as extra.  Defaults [].
        background_scorer : CharacteristicScorer, optional
            Used for bg scores

        Returns
        -------
        Dictionary that encodes the scatter chart
        information. The dictionary can be dumped as a json document, and
        used in scattertext.html
         {info: {category_name: ..., not_category_name},
          data: [{term:,
                  x:frequency [0-1],
                  y:frequency [0-1],
                  ox: score,
                  oy: score,
                  s: score,
                  os: original score,
                  p: p-val,
                  cat25k: freq per 25k in category,
                  cat: count in category,
                  ncat: count in non-category,
                  catdocs: [docnum, ...],
                  ncatdocs: [docnum, ...]
                  ncat25k: freq per 25k in non-category}, ...]}}

        '''
        if self.used:
            raise Exception("Cannot reuse a ScatterChart constructor")

        if kwargs is not {} and self.verbose:
            logging.info("Excessive arguments passed to ScatterChart.to_dict: " + str(kwargs))

        all_categories = self.term_doc_matrix.get_categories()
        assert category in all_categories

        if not_categories is None:
            not_categories = [c for c in all_categories if c != category]
            neutral_categories = []
            extra_categories = []
        elif neutral_categories is None:
            neutral_categories = [c for c in all_categories
                                  if c not in [category] + not_categories]
            extra_categories = []
        elif extra_categories is None:
            extra_categories = [c for c in all_categories
                                if c not in [category] + not_categories + neutral_categories]
        all_categories = [category] + not_categories + neutral_categories + extra_categories

        df = self._get_term_category_frequencies()

        self._add_x_and_y_coords_to_term_df_if_injected(df)
        if scores is None:
            scores = self._get_default_scores(category, not_categories, df)

        category_column_name = category + ' freq'
        df['category score'] = CornerScore.get_scores_for_category(
            df[category_column_name],
            df[[c + ' freq' for c in not_categories]].sum(axis=1)
        )
        if self.scatterchartdata.term_significance is not None:
            df['p'] = get_p_vals(df, category_column_name,
                                 self.scatterchartdata.term_significance)
        df['not category score'] = CornerScore.get_scores_for_category(
            df[[c + ' freq' for c in not_categories]].sum(axis=1),
            df[category_column_name]
        )
        df['color_scores'] = scores
        if self.scatterchartdata.terms_to_include is None:
            df = self._filter_bigrams_by_minimum_not_category_term_freq(
                category_column_name, not_categories, df)
            df = filter_bigrams_by_pmis(
                self._filter_by_minimum_term_frequency(all_categories, df),
                threshold_coef=self.scatterchartdata.pmi_threshold_coefficient
            )

        if self.scatterchartdata.filter_unigrams:
            df = filter_out_unigrams_that_only_occur_in_one_bigram(df)
        if len(df) == 0:
            raise NoWordMeetsTermFrequencyRequirementsError()
        df['category score rank'] = rankdata(df['category score'], method='ordinal')
        df['not category score rank'] = rankdata(df['not category score'], method='ordinal')
        if self.scatterchartdata.max_terms and self.scatterchartdata.max_terms < len(df):
            assert self.scatterchartdata.max_terms > 0
            df = self._limit_max_terms(category, df)
        df = df.reset_index()

        if self.x_coords is None:
            self.x_coords, self.y_coords = self._get_coordinates_from_transform_and_jitter_frequencies \
                (category, df, not_categories, transform)
            df['x'], df['y'] = self.x_coords, self.y_coords
            df['ox'], df['oy'] = self.x_coords, self.y_coords

        df['not cat freq'] = df[[x + ' freq' for x in not_categories]].sum(axis=1)
        if neutral_categories != []:
            df['neut cat freq'] = df[[x + ' freq' for x in neutral_categories]].sum(axis=1).fillna(0)
        if extra_categories != []:
            df['extra cat freq'] = df[[x + ' freq' for x in extra_categories]].sum(axis=1).fillna(0)

        json_df = df[['x', 'y', 'ox', 'oy', 'term']]

        if self.scatterchartdata.term_significance:
            json_df['p'] = df['p']
        self._add_term_freq_to_json_df(json_df, df, category)

        json_df['s'] = self.scatterchartdata.score_transform(df['color_scores'])
        json_df['os'] = df['color_scores']
        if background_scorer:
            bg_scores = background_scorer.get_scores(self.term_doc_matrix)
            json_df['bg'] = bg_scores[1].loc[json_df.term].values
        elif not self.scatterchartdata.use_non_text_features:
            json_df['bg'] = self._get_corpus_characteristic_scores(json_df)

        self._preform_axis_rescale(json_df, self._rescale_x, 'x')
        self._preform_axis_rescale(json_df, self._rescale_y, 'y')

        if self.scatterchartdata.terms_to_include is not None:
            json_df = self._use_only_selected_terms(json_df)

        category_terms = list(json_df.sort_values('s', ascending=False)['term'][:10])
        not_category_terms = list(json_df.sort_values('s', ascending=True)['term'][:10])
        if category_name is None:
            category_name = category
        if not_category_name is None:
            not_category_name = 'Not ' + category_name

        def better_title(x):
            if title_case_names:
                return ' '.join([t[0].upper() + t[1:].lower() for t in x.split()])
            else:
                return x

        j = {'info': {'category_name': better_title(category_name),
                      'not_category_name': better_title(not_category_name),
                      'category_terms': category_terms,
                      'not_category_terms': not_category_terms,
                      'category_internal_name': category,
                      'not_category_internal_names': not_categories,
                      'categories': self.term_doc_matrix.get_categories(),
                      'neutral_category_internal_names': neutral_categories,
                      'extra_category_internal_names': extra_categories}}
        if self.metadata_term_lists is not None:
            j['metalists'] = self.metadata_term_lists
        if self.metadata_descriptions is not None:
            j['metadescriptions'] = self.metadata_descriptions
        if self.term_colors is not None:
            j['info']['term_colors'] = self.term_colors

        # j['data'] = json_df.sort_values(by=['x', 'y', 'term']).to_dict(orient='records')
        j['data'] = json_df.to_dict(orient='records')
        if self.hidden_terms is not None:
            for term_obj in j['data']:
                if term_obj['term'] in self.hidden_terms:
                    term_obj['display'] = False
        return j

    def _add_x_and_y_coords_to_term_df_if_injected(self, df):
        if self.x_coords is not None:
            df['x'] = self.x_coords
            df['y'] = self.y_coords
        if not self.original_x is None:
            try:
                df['ox'] = self.original_x.values
            except AttributeError:
                df['ox'] = self.original_x
        if not self.original_y is None:
            try:
                df['oy'] = self.original_y.values
            except AttributeError:
                df['oy'] = self.original_y

    def _get_term_category_frequencies(self):
        return self.term_doc_matrix.get_term_category_frequencies(self.scatterchartdata)

    def _use_only_selected_terms(self, json_df):
        term_df = pd.DataFrame({"term": self.scatterchartdata.terms_to_include})
        return pd.merge(json_df, term_df, on='term', how='inner')

    def _preform_axis_rescale(self, json_df, rescaler, variable_to_rescale):
        if rescaler is not None:
            json_df[variable_to_rescale] = rescaler(json_df[variable_to_rescale])
            assert json_df[variable_to_rescale].min() >= 0 and json_df[variable_to_rescale].max() <= 1

    def _get_corpus_characteristic_scores(self, json_df):
        bg_terms = self.term_doc_matrix.get_scaled_f_scores_vs_background()
        bg_terms = bg_terms['Scaled f-score']
        bg_terms.name = 'bg'
        bg_terms = bg_terms.reset_index()
        bg_terms.columns = ['term' if x in ['index', 'word'] else x for x in bg_terms.columns]
        json_df = pd.merge(json_df, bg_terms, on='term', how='left')
        return json_df['bg'].fillna(0)

    def _add_term_freq_to_json_df(self, json_df, term_freq_df, category):
        json_df['cat25k'] = (((term_freq_df[category + ' freq'] * 1.
                               / term_freq_df[category + ' freq'].sum()) * 25000).fillna(0)
                             .apply(np.round).astype(np.int))
        json_df['ncat25k'] = (((term_freq_df['not cat freq'] * 1.
                                / term_freq_df['not cat freq'].sum()) * 25000).fillna(0)
                              .apply(np.round).astype(np.int))
        if 'neut cat freq' in term_freq_df:
            json_df['neut25k'] = (((term_freq_df['neut cat freq'] * 1.
                                    / term_freq_df['neut cat freq'].sum()) * 25000).fillna(0)
                                  .apply(np.round).astype(np.int))
            json_df['neut'] = term_freq_df['neut cat freq']
        else:
            json_df['neut25k'] = 0
            json_df['neut'] = 0
        if 'extra cat freq' in term_freq_df:
            json_df['extra25k'] = (((term_freq_df['extra cat freq'] * 1.
                                     / term_freq_df['extra cat freq'].sum()) * 25000).fillna(0)
                                   .apply(np.round).astype(np.int))
            json_df['extra'] = term_freq_df['extra cat freq']
        else:
            json_df['extra25k'] = 0
            json_df['extra'] = 0

    def _get_category_names(self, category):
        other_categories = [val + ' freq' for val \
                            in self.term_doc_matrix.get_categories() \
                            if val != category]
        all_categories = other_categories + [category + ' freq']
        return all_categories, other_categories

    def _get_coordinates_from_transform_and_jitter_frequencies(self,
                                                               category,
                                                               df,
                                                               other_categories,
                                                               transform):
        not_counts = df[[c + ' freq' for c in other_categories]].sum(axis=1)
        counts = df[category + ' freq']
        x_data_raw = transform(not_counts, df.index, counts)
        y_data_raw = transform(counts, df.index, not_counts)
        x_data = self._add_jitter(x_data_raw)
        y_data = self._add_jitter(y_data_raw)
        return x_data, y_data

    def _add_jitter(self, vec):
        """
        :param vec: array to jitter
        :return: array, jittered version of arrays
        """
        if self.scatterchartdata.jitter == 0 or self.scatterchartdata.jitter is None:
            return vec
        return vec + np.random.rand(1, len(vec))[0] * self.scatterchartdata.jitter

    def _term_rank_score_and_frequency_df(self, all_categories, category, other_categories, scores):
        df = self._get_term_category_frequencies()
        self._add_x_and_y_coords_to_term_df_if_injected(df)

        if scores is None:
            scores = self._get_default_scores(category, other_categories, df)
        # np.array(self.term_doc_matrix.get_rudder_scores(category))
        # convention_df['category score'] = np.array(self.term_doc_matrix.get_rudder_scores(category))
        category_column_name = category + ' freq'
        df['category score'] = CornerScore.get_scores_for_category(
            df[category_column_name],
            df[[c + ' freq' for c in other_categories]].sum(axis=1)
        )
        if self.scatterchartdata.term_significance is not None:
            df['p'] = get_p_vals(df, category_column_name,
                                 self.scatterchartdata.term_significance)
        df['not category score'] = CornerScore.get_scores_for_category(
            df[[c + ' freq' for c in other_categories]].sum(axis=1),
            df[category_column_name]
        )
        df['color_scores'] = scores
        if self.scatterchartdata.terms_to_include is None:
            df = self._filter_bigrams_by_minimum_not_category_term_freq(
                category_column_name, other_categories, df)
            df = filter_bigrams_by_pmis(
                self._filter_by_minimum_term_frequency(all_categories, df),
                threshold_coef=self.scatterchartdata.pmi_threshold_coefficient
            )

        if self.scatterchartdata.filter_unigrams:
            df = filter_out_unigrams_that_only_occur_in_one_bigram(df)
        if len(df) == 0:
            raise NoWordMeetsTermFrequencyRequirementsError()
        df['category score rank'] = rankdata(df['category score'], method='ordinal')
        df['not category score rank'] = rankdata(df['not category score'], method='ordinal')
        if self.scatterchartdata.max_terms and self.scatterchartdata.max_terms < len(df):
            assert self.scatterchartdata.max_terms > 0
            df = self._limit_max_terms(category, df)
        df = df.reset_index()
        return df

    def _filter_bigrams_by_minimum_not_category_term_freq(self, category_column_name, other_categories, df):
        if self.scatterchartdata.terms_to_include is None:
            return df[(df[category_column_name] > 0)
                      | (df[[c + ' freq' for c in other_categories]].sum(axis=1)
                         >= self.scatterchartdata.minimum_not_category_term_frequency)]
        else:
            return df

    def _filter_by_minimum_term_frequency(self, all_categories, df):
        if self.scatterchartdata.terms_to_include is None:
            return df[df[[c + ' freq' for c in all_categories]].sum(axis=1)
                      > self.scatterchartdata.minimum_term_frequency]
        else:
            return df

    def _limit_max_terms(self, category, df):
        df['score'] = self._term_importance_ranks(category, df)
        df = df.loc[df.sort_values('score').iloc[:self.scatterchartdata.max_terms].index]
        return df[[c for c in df.columns if c != 'score']]

    def _get_default_scores(self, category, other_categories, df):
        category_column_name = category + ' freq'
        cat_word_counts = df[category_column_name]
        not_cat_word_counts = df[[c + ' freq' for c in other_categories]].sum(axis=1)
        # scores = ScaledFScore.get_scores(cat_word_counts, not_cat_word_counts)
        scores = RankDifference().get_scores(cat_word_counts, not_cat_word_counts)
        return scores

    def _term_importance_ranks(self, category, df):
        return np.array([df['category score rank'], df['not category score rank']]).min(axis=0)

    def draw(self,
             category,
             num_top_words_to_annotate=4,
             words_to_annotate=[],
             scores=None,
             transform=percentile_alphabetical):
        '''Outdated.  MPLD3 drawing.

        Parameters
        ----------
        category
        num_top_words_to_annotate
        words_to_annotate
        scores
        transform

        Returns
        -------
        pd.DataFrame, html of fgure
        '''
        try:
            import matplotlib.pyplot as plt
        except:
            raise Exception("matplotlib and mpld3 need to be installed to use this function.")
        try:
            from mpld3 import plugins, fig_to_html
        except:
            raise Exception("mpld3 need to be installed to use this function.")
        all_categories, other_categories = self._get_category_names(category)
        df = self._term_rank_score_and_frequency_df(all_categories, category, other_categories, scores)
        if self.x_coords is None:
            df['x'], df['y'] = self._get_coordinates_from_transform_and_jitter_frequencies \
                (category, df, other_categories, transform)
        df_to_annotate = df[(df['not category score rank'] <= num_top_words_to_annotate)
                            | (df['category score rank'] <= num_top_words_to_annotate)
                            | df['term'].isin(words_to_annotate)]
        words = list(df['term'])

        font = {'family': 'sans-serif',
                'color': 'black',
                'weight': 'normal',
                'size': 'large'}

        fig, ax = plt.subplots()
        plt.figure(figsize=(10, 10))
        plt.gcf().subplots_adjust(bottom=0.2)
        plt.gcf().subplots_adjust(right=0.2)

        points = ax.scatter(self.x_coords,
                            self.y_coords,
                            c=-df['color_scores'],
                            cmap='seismic',
                            s=10,
                            edgecolors='none',
                            alpha=0.9)
        tooltip = plugins.PointHTMLTooltip(points,
                                           ['<span id=a>%s</span>' % w for w in words],
                                           css='#a {background-color: white;}')
        plugins.connect(fig, tooltip)
        ax.set_ylim([-.2, 1.2])
        ax.set_xlim([-.2, 1.2])
        ax.xaxis.set_ticks([0., 0.5, 1.])
        ax.yaxis.set_ticks([0., 0.5, 1.])
        ax.set_ylabel(category.title() + ' Frequency Percentile', fontdict=font, labelpad=20)
        ax.set_xlabel('Not ' + category.title() + ' Frequency Percentile', fontdict=font, labelpad=20)

        for i, row in df_to_annotate.iterrows():
            # alignment_criteria = row['category score rank'] < row['not category score rank']
            alignment_criteria = i % 2 == 0
            horizontalalignment = 'right' if alignment_criteria else 'left'
            verticalalignment = 'bottom' if alignment_criteria else 'top'
            term = row['term']
            ax.annotate(term,
                        (self.x_coords[i], self.y_data[i]),
                        size=15,
                        horizontalalignment=horizontalalignment,
                        verticalalignment=verticalalignment,
                        )
        # texts.append(
        # ax.text(row['dem freq scaled'], row['rep freq scaled'], row['word'])
        # )
        # adjust_text(texts, arrowprops=dict(arrowstyle="->", color='r', lw=0.5))
        plt.show()
        return df, fig_to_html(fig)

    def to_dict_without_categories(self):
        if self.y_coords is None or self.x_coords is None or self.original_x is None or self.original_y is None:
            raise NeedToInjectCoordinatesException(
                "This function requires you run inject_coordinates."
            )
        json_df = (self.term_doc_matrix
                   .get_term_count_df()
                   .rename(columns={'corpus': 'cat'}))
        json_df['cat25k'] = (((json_df['cat'] * 1.
                               / json_df['cat'].sum()) * 25000)
                             .apply(np.round).astype(np.int))

        self._add_x_and_y_coords_to_term_df_if_injected(json_df)
        j = {}
        j['data'] = json_df.reset_index().sort_values(by=['x', 'y', 'term']).to_dict(orient='records')
        return j