def testFFTCentralFreqBatch(self):
        # Same for batches
        for gpu in [True, False]:
            x = torch.FloatTensor(4, 10, 10, 2).fill_(0)
            x.narrow(3, 0, 1).fill_(1)
            if gpu:
                x = x.cuda()

            a = x.sum()
            fft = sl.Fft()
            fft(x, inplace=True)
            c = x[:, 0, 0, 0].sum()
            self.assertEqual(a, c)
    def testFFTCentralFreq(self):
        # Checked the 0 frequency
        for gpu in [True, False]:
            x = torch.FloatTensor(10, 10, 2).fill_(0)
            x.narrow(2, 0, 1).fill_(1)
            if gpu:
                x = x.cuda()

            a = x.sum()
            fft = sl.Fft()
            fft(x, inplace=True)
            b = x[0, 0, 0]
            self.assertAlmostEqual(a, b, places=6)
Exemple #3
0
    def testFFTCentralFreq(self):
        # Checked the 0 frequency
        for gpu in [True, False]:
            x = torch.FloatTensor(10, 10, 2).fill_(0)
            x.narrow(2, 0, 1).fill_(1)
            if gpu:
                x = x.cuda()

            a = x.sum()
            fft = sl.Fft()
            fft(x, inplace=True)
            b = x[0, 0, 0]
            tt.assert_almost_equal(a.cpu(), b.cpu(), decimal=6)
    def testFFTUnormalized(self):
        # Check for a random tensor:
        x = torch.FloatTensor(25, 17, 3, 2).bernoulli_(0.5)
        for gpu in [True, False]:

            if gpu:
                x = x.cuda()
            else:
                x = x.cpu()
            x.narrow(3, 1, 1).fill_(0)

            fft = sl.Fft()
            y = fft(x)
            z = fft(y, direction='C2R')

            z /= 17 * 3  # FFTs are unnormalized

            self.assertAlmostEqual(linfnorm(x.select(3, 0), z), 0, places=6)
Exemple #5
0
    def testFFTUnormalized(self):
        # Check for a random tensor:
        x = torch.FloatTensor(25, 17, 3, 2).bernoulli_(0.5)
        for gpu in [True, False]:

            if gpu:
                x = x.cuda()
            else:
                x = x.cpu()
            x.narrow(3, 1, 1).fill_(0)

            fft = sl.Fft()
            y = fft(x)
            z = fft(y, direction='C2R')

            z /= 17 * 3  # FFTs are unnormalized

            tt.assert_allclose(x.select(3, 0).cpu(), z.cpu(), atol=1e-6)