def main(): filepath = "/workspace2/kitti/testing/image_2/007481.png" filepath = "test/test0_2.jpg" filepath = "test/test1_2.jpg" filepath = "test/noise3.jpg" filepath = "test/adversary.png" filepath = "/workspace2/kitti/testing/image_2/007489.png" filepath = "test/single_generated.jpg" filepath = "test/valid_adv7.png" config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) sess = tf.Session(config=config) images = tf.placeholder(tf.float32, [1, 150, 496, 3]) scdobj = scd.SCD(input=images) scd_saver = scd.get_saver() scd_saver.restore(sess, "/workspace/imgsynth/ssd_300_kitti/ssd_model.ckpt") image = cv2.resize(scd.imread_as_jpg(filepath), (496, 150)) image = np.expand_dims(image, 0) reses = scdobj.get_image(sess, image) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/single_detected%d.jpg" % i, a)
def main(): nf = 256 zdim = 1024 filepath = "/workspace2/kitti/testing/image_2/007481.png" filepath = "test/test0_2.jpg" filepath = "test/test1_2.jpg" filepath = "test/noise3.jpg" filepath = "test/adversary.png" filepath = "/workspace2/kitti/training/image_2/000003.png" filepath = "/workspace2/kitti/testing/image_2/007597.png" filepath = "/workspace2/kitti/testing/image_2/007662.png" filepath = "/workspace2/kitti/testing/image_2/008001.png" filepath = "/workspace2/kitti/testing/image_2/007618.png" config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) sess = tf.Session(config=config) images = tf.placeholder(tf.float32, [1, 150, 496, 3]) scdobj = scd.SCD(input=images) rgan = eval_rgan.rgan(images=scdobj.end_points["pool5"], z_dim=zdim, nf=nf, training=True) imgsynth_from_feature = eval_imgsynth.ImageSynthesizer(rgan.rec_x_out) scd_saver = scd.get_saver() scd_saver.restore(sess, "/workspace/imgsynth/ssd_300_kitti/ssd_model.ckpt") imgsynth_saver = eval_imgsynth.get_saver() imgsynth_saver.restore( sess, "/workspace/imgsynth/result_kitti256p_2/model.ckpt-89") rgan_saver = eval_rgan.get_saver() #rgan_saver.restore(sess,"models/model-99999") rgan_saver.restore(sess, "models_doubleres_constr_x_rzx/model-80999") image = cv2.resize(scd.imread_as_jpg(filepath), (496, 150)) image = np.expand_dims(image, 0) reses = imgsynth_from_feature.generate_image_from_featuremap( sess, image, images) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/single_generated.jpg", a)
def main(): config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) sess = tf.Session(config=config) #define tensors and models zb = 6 nf = 256 zdim = 1024 images = tf.placeholder(tf.float32, [2, 150, 496, 3]) z = tf.placeholder(tf.float32, [zb, zdim]) scdobj = scd.SCD(input=images) imgsynth = eval_imgsynth.ImageSynthesizer(scdobj.end_points["pool5"]) rgan = eval_rgan.rgan(images=scdobj.end_points["pool5"], z_dim=zdim, nf=nf, training=True) imgsynth_from_feature = eval_imgsynth.ImageSynthesizer(rgan.rec_x_out, reuse=True) rgan_from_z = eval_rgan.rgan(latent_vec=z, nf=nf, z_dim=zdim, reuse=True, training=True) imgsynth_from_z = eval_imgsynth.ImageSynthesizer(rgan_from_z.rec_x_p_out, reuse=True) #load weights scd_saver = scd.get_saver() scd_saver.restore(sess, "/workspace/imgsynth/ssd_300_kitti/ssd_model.ckpt") imgsynth_saver = eval_imgsynth.get_saver() imgsynth_saver.restore( sess, "/workspace/imgsynth/result_kitti256p_2/model.ckpt-89") rgan_saver = eval_rgan.get_saver() rgan_saver.restore(sess, "models/model-99999") co = [] image = cv2.resize( scd.imread_as_jpg("/workspace2/kitti/testing/image_2/007482.png"), (496, 150)) co.append(image) image = cv2.resize( scd.imread_as_jpg("/workspace2/kitti/testing/image_2/007481.png"), (496, 150)) co.append(image) #reses = imgsynth.generate_image_from_featuremap(np.expand_dims(image,0),images) image = np.array(co) #simply get detection result reses = scdobj.get_image(sess, image) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/detected%d.jpg" % i, a) #model:image=>feature, image decoder:feature=>image_hat reses = imgsynth.generate_image_from_featuremap(sess, image, images) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/test%d.jpg" % i, a) #model:image=>feature, gan:feature=>latent vector=>feature_hat, image decoder:feature_hat=>image_hat reses = imgsynth_from_feature.generate_image_from_featuremap( sess, image, images) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/test%d_2.jpg" % i, a) #get detection result thru gan and image decoder reses = scdobj.get_image(sess, reses) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/gan_detected%d.jpg" % i, a) return 0 #latent vector=>feature_hat, image decoder:feature_hat=>image_hat np.random.seed(0) zs = [] zsp = np.random.randn(zb, zdim) + 1 zs = np.array(zsp) reses = imgsynth_from_z.generate_image_from_featuremap(sess, zs, z) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/noise%d.jpg" % i, a) #noise interpolation zsb = [] for i in range(0, zb): #zs.append(zsp[0]*float(i)/(float(zb)-1.)+zsp[1]*(1.-float(i)/(float(zb)-1.))) zsb.append(zsp[i] * (1. - i / (zb - 1))) zsb = np.array(zsb) reses = imgsynth_from_z.generate_image_from_featuremap(sess, zsb, z) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/noise_interpolate%d.jpg" % i, a) #model:images=>features, gan:features=>latent vectors=>features_hat, interpolate:features_hat=>features_interplated, image decoder:feature_interplated=>image_hat zs = [] zsp = rgan.generate_noise_from_featuremap(sess, image, images) for i in range(0, zb): zs.append(zsp[0] * float(i) / zb + zsp[1] * (1 - float(i) / zb)) zs = np.array(zs) reses = imgsynth_from_z.generate_image_from_featuremap(sess, zs, z) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/interpolate%d.jpg" % i, a) zs = [] zsp = rgan.generate_noise_from_featuremap(sess, image, images) for i in range(0, zb): zs.append(zsp[0] * float(i) / zb + zsp[1] * (1 - float(i) / zb) + 3) zs = np.array(zs) reses = imgsynth_from_z.generate_image_from_featuremap(sess, zs, z) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/interpolate2%d.jpg" % i, a)
train_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.contrib.framework.get_name_scope()) p2phd_var_list = [ v for v in train_vars if v.name.split("/")[0] == "pix2pixhd" ] saver = tf.train.Saver(max_to_keep=10, var_list=p2phd_var_list) config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) with tf.Session(config=config) as session: session.run(tf.global_variables_initializer()) """ train_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.contrib.framework.get_name_scope()) ssd_var_list=[v for v in train_vars if v.name.split("/")[0] == "ssd_300_vgg"] scd_saver = tf.train.Saver(var_list=ssd_var_list) """ scd_saver = scd.get_saver() scd_saver.restore(session, "/workspace/imgsynth/ssd_300_kitti/ssd_model.ckpt") fmgan_saver = fmgan.get_saver() fmgan_saver.restore( session, "/workspace/natural-adversary/image/models_doubleres_constr_x_rzx/model-80999" ) p2phd_saver = p2phd.get_saver() p2phd_saver.restore(session, "/workspace/p2phd_tf/models/model-716999") images = noise = gen_cost = dis_cost = inv_cost = None dis_cost_lst, inv_cost_lst = [], [] data_files = glob(os.path.join(args.dataset_train_path, "*.png")) data_files = sorted(data_files) data_files = np.array(data_files)