Exemple #1
0
def process(document):
    scholar = ScholarQuerier()
    query = SearchScholarQuery()

    # save cookie at first paper
    global save_cookie
    if save_cookie:
        query.set_phrase("quantum theory")
        scholar.send_query(query)
        scholar.save_cookies()
        save_cookie = False

    query.set_phrase(document.title)
    scholar.send_query(query)
    scholar_articles = scholar.articles
    if len(scholar_articles) == 0:
        return None

    title_match_ratio = \
        difflib.SequenceMatcher(None, document.title, scholar_articles[0]['title']).ratio()
    if title_match_ratio < min_title_match_ratio:
        return None

    old_tags = document.tags
    citation_tag = ncitations_to_tag(scholar_articles[0]['num_citations'])
    new_tags = update_tags(old_tags, [(tag_pattern, citation_tag)])
    new_tags.append(str(scholar_articles[0]['num_citations']))
    document.update(tags=new_tags)

    return scholar_articles[0]['num_citations']
Exemple #2
0
def papers_by_query_api(request):
    if request.method == 'GET':
        phrase = request.GET.get('phrase', '')
        if not phrase:
            return HttpResponseBadRequest()

        query = SearchScholarQuery()
        query.set_phrase(phrase)
        querier = ScholarQuerier()
        querier.send_query(query)
        papers = querier.articles

        if not papers:
            result = {
                'papers': [{
                    'title': '',
                    'id': 0,
                    'url': '',
                    'excerpt': ''
                }]
            }
        else:
            result = {
                'papers': [{
                    'title': papers[0]['title'],
                    'id': papers[0]['cluster_id'],
                    'url': papers[0]['url'],
                    'excerpt': papers[0]['excerpt']
                }]
            }
        return JsonResponse(result)
    else:
        return HttpResponseBadRequest()
def getRelatedPublications(author):
    print author
    settings = ScholarSettings() #adjust scholar settings
    querier = ScholarQuerier() #Instance of ScholarQuerier() conducts a search on Google Scholar
    querier.apply_settings(settings) #applies settings as provided by the instance of ScholarSettings()
    query = SearchScholarQuery()
    query.set_author(author)
    querier.send_query(query)
    print querier.articles
Exemple #4
0
def getPublications(author):
    print author
    querier = ScholarQuerier()
    settings = ScholarSettings()
    querier.apply_settings(settings)
    query = SearchScholarQuery()
    query.set_author(author)
    querier.send_query(query)
    #scholar.csv(querier)
    scholar.txt(querier, with_globals=False)
Exemple #5
0
def getRelatedPublications(author):
    print author
    settings = ScholarSettings()  #adjust scholar settings
    querier = ScholarQuerier(
    )  #Instance of ScholarQuerier() conducts a search on Google Scholar
    querier.apply_settings(
        settings
    )  #applies settings as provided by the instance of ScholarSettings()
    query = SearchScholarQuery()
    query.set_author(author)
    querier.send_query(query)
    print querier.articles
Exemple #6
0
def getResult(query):
    querier = ScholarQuerier()
    citations = 0
    url_citations = ""
    clusterID = ""
    try:
        querier.send_query(query)
        print querier.articles[0].attrs['cluster_id']
        citations = querier.articles[0].attrs['num_citations'][0]
        url_citations = querier.articles[0].attrs['url_citations'][0]
        clusterID = querier.articles[0].attrs['cluster_id'][0]
    except:
        pass
    return citations, url_citations, clusterID
def literature_search(query_terms, type='full_name'):
    """
    perform a google scholar query with given terms
    """

    querier = ScholarQuerier()
    settings = ScholarSettings()
    config = ScholarConf()
    settings.set_citation_format(ScholarSettings.CITFORM_BIBTEX)
    querier.apply_settings(settings)
    query = SearchScholarQuery()

    papers = []
    for item in query_terms.values:
        repo_id = item[0]
        
        if type !='full_name':
            repo_name = item[1]
            phrase = item[2]
            keywords = item[3]
            start_year = item[4]
            if keywords:
                if ',' not in keywords:
                    keywords = keywords + ','
                query.set_words_some(keywords)                

            query.set_words(repo_name)
            query.set_phrase(phrase)

            phrase_text = repo_name + ', ' + phrase
        else:
            phrase = item[1]
            start_year = item[2]

            query.set_phrase(phrase) # commontk/CTK, meoyo/AIPS
            phrase_text = phrase
        print('search papers for {} ...'.format(phrase_text))
        query.set_timeframe(start_year)
        querier.send_query(query)
        articles = querier.articles
        if len(articles)==0:
            continue
        results = process_arts(config, item[0], phrase_text, articles)
        papers = papers + results
        time_delay = random.randrange(1,10)
        time.sleep(time_delay)

    return papers
def getPublications_Title(title):
    querier = ScholarQuerier()
    settings = ScholarSettings()
    querier.apply_settings(settings)
    query = SearchScholarQuery()
    publications = []
    query.set_words(title)
    querier.send_query(query)
    related_list = scholar.json(querier)
    if related_list:
        print "No of related publications found : ",
        print len(related_list)
        for item in related_list:
            #print item.keys()
            #item["relatedTitle"] = title[0]
            publications.append(item)
    #time.sleep(random.randrange(10, 40, 2));
    #time.sleep(60);
    return publications
def search(bot, update, args):
    search_command = ' '.join(args)

    bot.send_message(chat_id=update.message.chat_id, text="You searched for: " + search_command)

    querier = ScholarQuerier()
    query = SearchScholarQuery()
    query.set_words(args)
    querier.send_query(query)
    
    articles = querier.articles
    
    message = ""

    bot.send_message(chat_id=update.message.chat_id, text="Number of results: " + str(len(articles)))

    index = 0
    for article in articles:
        bot.send_message(chat_id=update.message.chat_id, text=str(index+1)+". " + article.attrs['title'][0])
def getPublications_Title(title):
	querier = ScholarQuerier()
	settings = ScholarSettings()
	querier.apply_settings(settings)
	query = SearchScholarQuery()
	publications = []
	query.set_words(title)
	querier.send_query(query)
	related_list = scholar.json(querier)
	if related_list:
		print "No of related publications found : ",
		print len(related_list)
		for item in related_list:
			#print item.keys()
			#item["relatedTitle"] = title[0]
			publications.append(item)
	#time.sleep(random.randrange(10, 40, 2));
	#time.sleep(60);
	return publications
Exemple #11
0
def query_scholar_for_papers(author, searchstring):

    querier = ScholarQuerier()
    settings = ScholarSettings()
    settings.set_citation_format(settings.CITFORM_BIBTEX)
    settings.set_per_page_results(5)
    querier.apply_settings(settings)
    query = SearchScholarQuery()
    query.set_author(author)
    query.set_phrase(searchstring)

    querier.send_query(query)

    return_str = ''
    if len(querier.articles) > 0:
        return_str += querier.articles[0].as_citation() + '\n'
    else:
        return_str = 'Ooopsie. No results. Maybe we ran over the request limit?'

    return return_str
def process(document):        
    scholar = ScholarQuerier() 
    query = SearchScholarQuery()
    query.set_phrase(document.title)
    scholar.send_query(query)
    scholar_articles = scholar.articles
    if len(scholar_articles) == 0:
        return None

    title_match_ratio = \
        difflib.SequenceMatcher(None, document.title, scholar_articles[0]['title']).ratio()
    if title_match_ratio < min_title_match_ratio:
        return None

    old_tags = document.tags
    citation_tag = ncitations_to_tag(scholar_articles[0]['num_citations'])
    new_tags = update_tags(old_tags, [(tag_pattern, citation_tag)])
    document.update(tags=new_tags)
    
    return scholar_articles[0]['num_citations']
Exemple #13
0
def query_scholar_for_papers(author, searchstring):

    querier = ScholarQuerier()
    settings = ScholarSettings()
    settings.set_citation_format(settings.CITFORM_BIBTEX)
    settings.set_per_page_results(5)
    querier.apply_settings(settings)
    query = SearchScholarQuery()
    query.set_author(author)
    query.set_phrase(searchstring)

    querier.send_query(query)

    return_str = ''
    if len(querier.articles) > 0:
        return_str += querier.articles[0].as_citation() + '\n'
    else:
        return_str = 'Ooopsie. No results. Maybe we ran over the request limit?'

    return return_str
Exemple #14
0
def process(document):
    scholar = ScholarQuerier()
    query = SearchScholarQuery()
    query.set_phrase(document.title)
    scholar.send_query(query)
    scholar_articles = scholar.articles
    if len(scholar_articles) == 0:
        return None

    title_match_ratio = \
        difflib.SequenceMatcher(None, document.title, scholar_articles[0]['title']).ratio()
    if title_match_ratio < min_title_match_ratio:
        return None

    old_tags = document.tags
    citation_tag = ncitations_to_tag(scholar_articles[0]['num_citations'])
    new_tags = update_tags(old_tags, [(tag_pattern, citation_tag)])
    document.update(tags=new_tags)

    return scholar_articles[0]['num_citations']
def blocked():
	print "Test if blocked...."
	#time.sleep(random.randrange(10, 40, 2));
	time.sleep(60);
	publications = []
	querier = ScholarQuerier()
	settings = ScholarSettings()
	querier.apply_settings(settings)
	query = SearchScholarQuery()
	query.set_author("Ryan Baker")
	querier.send_query(query)
	related_list = scholar.json(querier)
	if related_list:
		print "Block Test : No of related publications found : ",
		print len(related_list)
		for item in related_list:
			publications.append(item)
	if len(publications) == 0:
		return True
	else:
		return False
def blocked():
    print "Test if blocked...."
    #time.sleep(random.randrange(10, 40, 2));
    time.sleep(60)
    publications = []
    querier = ScholarQuerier()
    settings = ScholarSettings()
    querier.apply_settings(settings)
    query = SearchScholarQuery()
    query.set_author("Ryan Baker")
    querier.send_query(query)
    related_list = scholar.json(querier)
    if related_list:
        print "Block Test : No of related publications found : ",
        print len(related_list)
        for item in related_list:
            publications.append(item)
    if len(publications) == 0:
        return True
    else:
        return False
def papers_by_query_api(request):
    if request.method == 'GET':
        phrase = request.GET.get('phrase', '')
        if not phrase:
            return HttpResponseBadRequest()

        query = SearchScholarQuery()
        query.set_phrase(phrase)
        querier = ScholarQuerier()
        querier.send_query(query)
        papers = querier.articles

        if not papers:
            result = {'papers': [{'title': '', 'id': 0, 'url': '', 'excerpt': ''}]}
        else:
            result = {'papers': [{'title': papers[0]['title'],
                                  'id': papers[0]['cluster_id'],
                                  'url': papers[0]['url'],
                                  'excerpt': papers[0]['excerpt']}]}
        return JsonResponse(result)
    else:
        return HttpResponseBadRequest()
def cites_api(request):
    if request.method == 'GET':
        paper_id = request.GET.get('paper_id', 0)
        page = request.GET.get('page', None)
        if not paper_id or page is None:
            return HttpResponseBadRequest()
        query = CitesScholarQuery(paper_id, page)
        querier = ScholarQuerier()
        querier.send_query(query)
        papers = querier.articles

        cites = []
        for paper in papers:
            if not paper['cluster_id']:
                continue
            cites.append({'title': paper['title'],
                          'id': paper['cluster_id'],
                          'url': paper['url']})

        return JsonResponse({'paper_id': paper_id, 'cites': cites})
    else:
        return HttpResponseBadRequest()
def getPublications(authors):
	print authors
	querier = ScholarQuerier()
	settings = ScholarSettings()
	querier.apply_settings(settings)
	query = SearchScholarQuery()
	publications = []
	for author in authors:
		if len(author) > 0:
			print "Using Author : ", 
			print author
			query.set_author(author)
			querier.send_query(query)
			related_list = scholar.json(querier)
			if related_list:
				print "No of related publications found : ",
				print len(related_list)
				for item in related_list:
					#print item.keys()
					#item["relatedAuthor"] = author
					publications.append(item)
			#time.sleep(random.randrange(10, 40, 2));
			time.sleep(20);
	return publications
Exemple #20
0
def cites_api(request):
    if request.method == 'GET':
        paper_id = request.GET.get('paper_id', 0)
        page = request.GET.get('page', None)
        if not paper_id or page is None:
            return HttpResponseBadRequest()
        query = CitesScholarQuery(paper_id, page)
        querier = ScholarQuerier()
        querier.send_query(query)
        papers = querier.articles

        cites = []
        for paper in papers:
            if not paper['cluster_id']:
                continue
            cites.append({
                'title': paper['title'],
                'id': paper['cluster_id'],
                'url': paper['url']
            })

        return JsonResponse({'paper_id': paper_id, 'cites': cites})
    else:
        return HttpResponseBadRequest()
def getPublications(authors):
    print authors
    querier = ScholarQuerier()
    settings = ScholarSettings()
    querier.apply_settings(settings)
    query = SearchScholarQuery()
    publications = []
    for author in authors:
        if len(author) > 0:
            print "Using Author : ",
            print author
            query.set_author(author)
            querier.send_query(query)
            related_list = scholar.json(querier)
            if related_list:
                print "No of related publications found : ",
                print len(related_list)
                for item in related_list:
                    #print item.keys()
                    #item["relatedAuthor"] = author
                    publications.append(item)
            #time.sleep(random.randrange(10, 40, 2));
            time.sleep(20)
    return publications
ACRONYMS = ['EEG', 'MEG', 'MRI']

querier = ScholarQuerier()
settings = ScholarSettings()
settings.set_citation_format(ScholarSettings.CITFORM_BIBTEX)
querier.apply_settings(settings)
query = SearchScholarQuery()
query.set_phrase("eelbrain")
query.set_timeframe(2012, None)
query.set_include_patents(False)


bib = parse_file(DST, 'bibtex')
start = 0
while True:
    querier.send_query(query)
    if len(querier.articles) == 0:
        break
    # extract articles
    for article in querier.articles:
        querier.get_citation_data(article)
        # convert to pybtex entry
        data = parse_bytes(article.citation_data, 'bibtex')
        assert len(data.entries) == 1
        for entry in data.entries.values():
            if entry.key in IGNORE:
                continue
            elif entry.type != 'article':
                continue
            elif entry.key in bib.entries:
                if entry.fields['journal'] == bib.entries[entry.key].fields['journal']:
def get_results_for(title, author):
    
    query = SearchScholarQuery()
    query.set_author(author)
    query.set_phrase(title)
    query.set_num_page_results(1)
    query.set_scope(True)

    settings = ScholarSettings()
    settings.set_citation_format(ScholarSettings.CITFORM_BIBTEX)
 
    querier = ScholarQuerier()
    querier.apply_settings(settings)
    querier.send_query(query)

    for art in querier.articles:
        
        print art.as_citation();
        
        bibtex_split = art.as_citation().split("\n")
        reftype = bibtex_split[0][1:-1].split("{")[0].lower(); 
        refid = bibtex_split[0][1:-1].split("{")[1].lower(); 
        bibtex_split.remove(bibtex_split[0])
    
        #print reftype + " " + refid + " " + str(bibtex_split)
    
        thismodule = sys.modules[__name__]

        while(True):
            
            try:
                features_of_type = getattr(thismodule, reftype).func_code.co_varnames[ 1: getattr(thismodule, reftype).func_code.co_argcount ]
                break;
            except AttributeError:
                var = raw_input("Type " + reftype + " not recongised, please enter a known type: ");
                reftype = var;
        
        while (True):
            arranged_name = []
            arranged_value = []
            for i in range(1, 10):
                arranged_name.append(None)
                arranged_value.append(None)
           
            for line in bibtex_split:
                if ( line.find("=") > -1 ):
                    stored_name = line.split("=")[0].strip()
                    stored_value = line.split("=")[1].strip();
                    stored_value = stored_value[1:-(len(stored_value)-stored_value.rfind("}"))]
                    if stored_name in features_of_type:
                        arranged_name[features_of_type.index(stored_name)] = stored_name
                        arranged_value[features_of_type.index(stored_name)] = stored_value
              
            short_arranged_name = arranged_name[ 0 : arranged_name.index(None)];
            short_arranged_value = arranged_value[ 0 : arranged_value.index(None)];
            
            if len(short_arranged_name) == len(features_of_type):
                return getattr(thismodule, reftype)(refid, *short_arranged_value).__getprintable__(True)
            else:
                for feature in features_of_type:
                    if ( feature not in arranged_name ):
                        var = raw_input(feature + " is not provided by the retrieved bibtex entry. Would you like to enter it now? (Y) or (N)");
                        if var == "Y":
                            var = raw_input("Enter value for " + feature + ": ");
                            bibtex_split.append(feature + " = {" + var + "}");
""".split()
ACRONYMS = ['EEG', 'MEG', 'MRI']

querier = ScholarQuerier()
settings = ScholarSettings()
settings.set_citation_format(ScholarSettings.CITFORM_BIBTEX)
querier.apply_settings(settings)
query = SearchScholarQuery()
query.set_phrase("eelbrain")
query.set_timeframe(2012, None)
query.set_include_patents(False)

bib = parse_file(DST, 'bibtex')
start = 0
while True:
    querier.send_query(query)
    if len(querier.articles) == 0:
        break
    # extract articles
    for article in querier.articles:
        querier.get_citation_data(article)
        # convert to pybtex entry
        data = parse_bytes(article.citation_data, 'bibtex')
        assert len(data.entries) == 1
        for entry in data.entries.values():
            if entry.key in IGNORE:
                continue
            elif entry.type != 'article':
                continue
            elif entry.key in bib.entries:
                if entry.fields['journal'] == bib.entries[