Exemple #1
0
def dark_current(n, T, tag='', amb_temp=''):
    int_times = np.round(np.linspace(5, 500, n), 0)

    cam.printProgressBar(0, sum(int_times))
    y = 0

    for j in int_times:
        cam.set_int_time(j)
        cam.set_frame_time(j + 20)

        cap, _ = cam.img_cap(routine, img_dir, 'f')
        hdu_img = fits.open(unsorted_img)
        data = hdu_img[0].data

        dark_header = fits.getheader(unsorted_img)
        dark_header.append(('FPATEMP', T, 'Temperature of detector'))
        dark_header.append(('TEMPAMB', amb_temp, 'Ambient Temperature'))
        hdu_img.close()

        os.remove(unsorted_img)  #Delete image after data retrieval
        fits.writeto(unsorted_img, data, dark_header)
        cam.file_sorting(img_dir, j, j + 20, tag=tag)

        y += j
        cam.printProgressBar(y, sum(int_times))
    print('PROGRAM HAS COMPLETED')
Exemple #2
0
def read_noise_estimate(n):
    '''
    Capture n pairs of bias frames (520REFCLKS)
    Produce difference image from each pair and store
    read noise estimate from sigma/sqrt(2) of difference
    Output histogram of final pair with RN estimate as average
    of all pairs
    '''
    cam.set_int_time(0.033)
    cam.set_frame_time(100)
    cam.printProgressBar(0,
                         2 * n,
                         prefix='Progress:',
                         suffix='Complete',
                         length=50)
    y = 0
    RNs = []

    for j in range(n):
        bias_1, _ = cam.simple_cap()
        y += 1
        cam.printProgressBar(y, 2 * n)
        bias_2, _ = cam.simple_cap()
        y += 1
        cam.printProgressBar(y, 2 * n)

        bias_1 = np.asarray(bias_1, dtype=np.int32)
        bias_2 = np.asarray(bias_2, dtype=np.int32)
        #save max mean dif, max absolute dif
        bias_dif = bias_2 - bias_1

        dif_clipped = bias_dif.flatten()
        RNs.append(np.std(dif_clipped) / np.sqrt(2))
    dev = np.std(dif_clipped)
    RNs = np.array(RNs)
    RN = round(np.median(RNs), 3)
    uncert = round(3 * np.std(RNs), 2)
    sample_hist, _, _ = stats.sigmaclip(dif_clipped, 5, 5)
    N, bins, _ = plt.hist(sample_hist,bins = 265,facecolor='blue', alpha=0.75,\
                label = 'Bias Difference Image')

    def fit_function(x, B, sigma):
        return (B * np.exp(-1.0 * (x**2) / (2 * sigma**2)))
    popt, _ = optimize.curve_fit(fit_function, xdata=bins[0:-1]+0.5, \
                ydata=N, p0=[0, dev])
    xspace = np.linspace(bins[0], bins[-1], 100000)
    fit_dev = round(popt[1], 3)
    delta_sig = round(abs(fit_dev - dev), 2)
    plt.plot(xspace+0.5, fit_function(xspace, *popt), color='darkorange', \
        linewidth=2.5, label='Gaussian fit, $\Delta\sigma$:{}'.format(delta_sig))

    plt.ylabel('No. of Pixels')
    plt.xlabel('ADUs')
    plt.title(
        'Read Noise Estimate:${}\pm{}$ ADUs ($n={}$, FPA:$-40^\circ$C)'.format(
            RN, uncert, n))
    plt.legend(loc='best')
    plt.show()
    print('PROGRAM HAS COMPLETED')
Exemple #3
0
def ramp(n, tag=''):
    int_times = np.round(np.linspace(50, 5000, n), 0)
    for j in int_times:
        cam.set_int_time(j)
        cam.set_frame_time(j + 20)
        cam.img_cap(routine, img_dir, 'f')
        cam.file_sorting(img_dir, j, j + 20, tag=tag)
    print('PROGRAM COMPLETE')
Exemple #4
0
def full_well(n, int_t, tag=''):
    dit = cam.set_int_time(int_t)
    cam.set_frame_time(int_t + 20)
    cam.printProgressBar(0, n)

    for j in range(n):
        cap, _ = cam.img_cap(routine, img_dir, 'f')
        cam.file_sorting(img_dir, dit, dit + 20, tag=tag)
        cam.printProgressBar(j, n)
Exemple #5
0
def gain_estimate(n):

    bias = cam.get_master_bias(-40)
    int_times = np.round(np.linspace(500, 5000, n), 0)
    medians, sigmasqrs = [], []

    for j in int_times:
        cam.set_int_time(j)
        cam.set_frame_time(j + 20)

        #Take pair of images
        first, _ = cam.simple_cap()
        second, _ = cam.simple_cap()

        first = np.asarray(first, dtype=np.int32)
        second = np.asarray(second, dtype=np.int32)

        first = first - bias
        second = second - bias

        diff_img = first - second  #Difference of bias-subtracted frames
        clipped_diff_img = cam.roi_clip(diff_img)
        clipped_img = cam.roi_clip(first)

        sigmasqrs.append(np.var(clipped_diff_img))  #variance from difference
        medians.append(np.median(clipped_img))  #intensity from single frame

    sigmasqrs = np.array(sigmasqrs) / 2  #Adjust for difference theorem
    medians = np.array(medians)

    #Linear fit
    slope, intercept, r_value, _, _ = stats.linregress(medians, sigmasqrs)
    print(slope, intercept, r_value)
    #Figure out parameters
    gain = round((1 / slope), 2)
    #read_noise = int(np.sqrt((gain**2)*intercept))

    results_path = testing_dir +'gain_testing/' + \
                    'study_2_results.txt'
    np.savetxt(results_path, (medians, sigmasqrs, int_times))
    fit = slope * medians + intercept
    slope = round(slope, 2)
    intercept = int(intercept)
    rsqr = round((r_value**2), 4)
    plt.scatter(medians, sigmasqrs, c='red', label='Data')
    plt.plot(medians,fit,'g--',label = 'Linear Fit: (m = {0}, b = {1}, $r^2$ = {2})'\
        .format(slope,intercept,rsqr))
    plt.ylabel('$\sigma^2$ (ADUs)')
    plt.xlabel('Intensity (ADUs)')
    plt.grid(True)
    plt.legend(loc='best')
    plt.title(
        'Pairwise Variance vs Intensity Gain Study, g = {0}'.format(gain))
    plt.show()
    print('PROGRAM HAS COMPLETED')
Exemple #6
0
def pair_ramp(n, tag=''):

    int_times = np.round(np.linspace(400, 700, n), 3)

    for j in int_times:
        cam.set_int_time(j)
        cam.set_frame_time(j + 250)
        #Take pair of images
        cam.img_cap(routine, img_dir, 'f')
        cam.file_sorting(img_dir, j, j + 250, tag=tag)
    print('PROGRAM COMPLETE')
Exemple #7
0
def read_ramp(n):
    int_times = np.round(np.linspace(0.033, 0.5, n), 3)
    RNs = []
    bias_level = []
    cam.printProgressBar(0, n)
    y = 0
    for j in int_times:
        int_t = cam.set_int_time(j)
        if int_t < (j + 1):
            cam.set_frame_time(20.33)

            bias_1, _ = cam.simple_cap()
            bias_2, _ = cam.simple_cap()

            bias_1 = np.asarray(bias_1, dtype=np.int32)
            bias_2 = np.asarray(bias_2, dtype=np.int32)
            bias_dif = bias_2 - bias_1

            dif_clipped = bias_dif.flatten()
            RNs.append(np.std(dif_clipped) / np.sqrt(2))

            bias_level.append(np.median(bias_1))
        else:
            RNs.append(RNs[-1])
            bias_level.append(bias_level[-1])

        y += 1
        cam.printProgressBar(y, n)
    RNs = 3.22 * np.array(RNs)
    bias_level = 3.22 * np.array(bias_level)

    int_times *= 1E3

    fig, ax1 = plt.subplots()

    color = 'tab:red'
    ax1.set_xlabel('Integration Time ($\mu$s)')
    ax1.set_ylabel('Median $e^-$/pixel', color=color)
    ax1.scatter(int_times, bias_level, color=color)
    ax1.tick_params(axis='y', labelcolor=color)

    ax2 = ax1.twinx()  # instantiate a second axes that shares the same x-axis

    color = 'tab:blue'
    ax2.set_ylabel('$\sigma$',
                   color=color)  # we already handled the x-label with ax1
    ax2.scatter(int_times, RNs, color=color)
    ax2.tick_params(axis='y', labelcolor=color)

    fig.tight_layout()  # otherwise the right y-label is slightly clipped
    plt.grid(True)
    plt.title('Read-noise/Bias as function of Integration Time')
    plt.show()
Exemple #8
0
def frame_int_comp():
    dit = 400
    cam.set_int_time(dit)
    deltas = np.linspace(-50, 50, 100)
    amps = []
    for i in deltas:
        cam.set_frame_time(dit + i)
        frame, _ = cam.simple_cap()
        amps.append(np.median(frame))

    plt.scatter(deltas, amps)
    plt.xlabel('Frame Time - Integration Time')
    plt.ylabel('Median Pixel Intensity (ADUs)')
    plt.grid(True)
    plt.show()
Exemple #9
0
def bias_temp(n, loops):
    bias = cam.get_master_bias(-40)  #Reference
    median_residuals = []
    times = []
    #Stamp starting time here

    int_t = cam.set_int_time(0.033)
    frame_t = cam.set_frame_time(20.033)
    for i in range(loops):
        img = np.zeros(shape=(naxis1, naxis2))  #Initiate array for coadding
        for i in range(n):
            frame, _ = cam.simple_cap()
            img += frame
        img = img / n
        #Stamp time of this frame here
        #Append time to list of times

        residual_img = img - bias
        median_residuals.append(
            np.median(residual_img))  #Append median of difference

    fig, ax1 = plt.subplots()
    colour = 'tab:blue'
    ax1 = sns.pointplot(x=temps, y=means, color=colour)
    ax1.set_ylabel('Median Residual', color=colour)
    ax1.tick_params(axis='y', labelcolor=colour)
    ax1.set_xlabel('Time (s)')

    plt.title(
        r'$\mathrm{Thermal\ emission\ of\ shutter\ study\(bias\ frames)}$')
    plt.show()
Exemple #10
0
def expose(i, tag=''):
    int_t = cam.set_int_time(i)
    frame_t = cam.set_frame_time(i + 100)
    frame, int_header = cam.simple_cap()
    if args.c != '':
        int_header.append(('COMMENT', args.c, 'User-defined comment'))
    fits.writeto(unsorted_img, frame, int_header)
    cam.weather_to_fits(unsorted_img)
    cam.file_sorting(local_img_dir, int_t, frame_t, tag=tag)
Exemple #11
0
def master_bias(n, tag, T):
    '''
    Enter docstring here
    '''
    cam.set_int_time(0.033)
    cam.set_frame_time(100.033)
    cam.printProgressBar(0,
                         n,
                         prefix='Progress:',
                         suffix='Complete',
                         length=50)

    stack = np.zeros((naxis1, naxis2), dtype=np.uint16)
    for j in range(n):
        cap, _ = cam.img_cap(routine, img_dir, 'f')
        hdu_img = fits.open(unsorted_img)
        fits_img = hdu_img[0]
        data = fits_img.data
        hdu_img.close()  #Close image so it can be sorted

        stack = np.dstack((stack, data))

        cam.printProgressBar(j,n, prefix = 'Progress:', \
            suffix = 'Complete', length = 50)

        if j == n - 1:  #On final frame grab header
            bias_header = fits.getheader(unsorted_img)

        os.remove(unsorted_img)  #Delete image after data retrieval

    bias_header.append(('NDIT', n, 'Number of integrations'))
    bias_header.append(('TYPE', 'MASTER_BIAS', '0s exposure frame'))
    bias_header.append(('FPATEMP', T, 'Temperature of detector'))

    #Median Stack
    stack = stack[:, :, 1:]  #Slice off base layer
    master_bias = np.median(stack, axis=2)
    master_bias = master_bias.astype(np.uint16)
    #Write master frame to fits
    master_path = read_path + 'master_bias_' \
                + tag + '.fits'
    fits.writeto(master_path, master_bias, bias_header)
    print('PROGRAM HAS COMPLETED')
Exemple #12
0
def expose(i,tag=''):
    int_t = cam.set_int_time(i)
    frame_t = cam.set_frame_time(i+250)
    frame , int_header = cam.simple_cap()
    if args.c != '':
        int_header.append(('COMMENT',args.c,'User-defined comment'))
  #  os.remove(unsorted_img)
    fits.writeto(unsorted_img,frame,int_header,overwrite=True)
    cam.weather_to_fits(unsorted_img)
    cam.file_sorting(img_dir,int_t,frame_t,tag=tag)
    print('EXPOSE COMPLETE')
Exemple #13
0
def persist_routine(dit, offset, end_t, tag):

    sorting_dir = persist_dir + '/' + tag
    os.mkdir(sorting_dir)
    img_name = sorting_dir + '/img_' + str(dit) + '_'

    #Run sld_on.exe
    subprocess.call(["C:\EDT\pdv\sld_on.exe"])
    print("SOAK BEGIN")

    cam.set_int_time(dit)
    cam.set_frame_time(dit + offset)

    fr = cam.read_frame_time()
    it = cam.read_int_time()
    print(fr, it)

    #Take throwaway image to open up cam
    cam.img_cap(routine, img_dir, 'f')
    os.remove(unsorted_img)

    #Run soak.exe
    subprocess.call(["C:\EDT\pdv\soak.exe"])
    t0 = time.time()  #Start Timer (time since soak)
    t = 0
    print("SOAK END")

    while t < end_t:
        cam.img_cap(routine, img_dir, 'f')
        t1 = time.time()
        t = t1 - t0
        t_s = round(t, 2)
        print("Image taken: {}".format(t_s))
        file_name = img_name + str(t_s) + '_.fits'
        os.rename(unsorted_img, file_name)

    print("PROGRAM COMPLETE")
Exemple #14
0
def master_dark(i, n, T, tag=''):
    '''
    DIT and NDIT are inputs
    Function can also take tag for sorting individual frames onto local drive
    T is the FPA temperature used to record temperature of FPA for this dark
    which is written to file name and FITS header
    Program also outputs a .npy binary file containing 3D datacube of central (100,100)
    window for studying temporal variance over stack
    '''
    cam.set_int_time(i)
    cam.set_frame_time(i + 20)
    bias = cam.get_master_bias(T)

    cam.printProgressBar(0,
                         n,
                         prefix='Progress:',
                         suffix='Complete',
                         length=50)

    stack = np.zeros((naxis1, naxis2), dtype=np.uint16)
    window = np.zeros((100, 100), dtype=np.uint16)
    for j in range(n):
        _, _ = cam.img_cap(routine, img_dir, 'f')
        hdu_img = fits.open(unsorted_img)
        data = hdu_img[0].data
        hdu_img.close()  #Close image so it can be sorted

        data = data - bias
        stack = np.dstack((stack, data))

        data_window = cam.window(data, 100)
        window = np.dstack((window, data_window))

        cam.printProgressBar(j,n, prefix = 'Progress:', \
            suffix = 'Complete', length = 50)

        if j == n - 1:  #On final frame grab header
            dark_header = fits.getheader(unsorted_img)

        #Save single frame to local drive
        cam.file_sorting(local_img_dir, i, i + 20, tag=tag)

    #Median stack
    stack = stack[:, :, 1:]  #Slice off base layer
    master_dark = np.median(stack, axis=2)

    #Prepare window for temporal analysis
    window = window[:, :, 1:]  #Slice off base layer
    temp_var = np.median(np.var(stack, axis=2))
    temp_path = master_darks + 'dark_cube' \
                + str(i/1000) + '_' +str(T) +'C.npy'
    np.save(temp_path, window)

    dark_header.append(('NDIT', n, 'Number of integrations'))
    dark_header.append(('TYPE', 'MASTER_DARK', 'Median stack of dark frames'))
    dark_header.append(('FPATEMP', T, 'Temperature of detector'))
    dark_header.append(
        ('TEMPVAR', temp_var,
         'Median temporal variance of central (100,100) window'))

    #Output master frame to fits
    master_path = master_darks + 'master_dark_' \
                + str(i/1000) + '_' +str(T) +'C.fits'
    fits.writeto(master_path, master_dark, dark_header)
    print('PROGRAM HAS COMPLETED')
Exemple #15
0
import scicam as cam 
import argparse

parser = argparse.ArgumentParser(prog='Write Frame Time', description='Change Camera Frame Time')
parser.add_argument('f', type=float, help='Frame time in milliseconds')
parser.add_argument('-v', action='store_true', help='Verbose mode')
parser.add_argument('-r', action='store_true',  help='Enter data as rate')
args = parser.parse_args()

if args.v:
    if args.r:
        cam.set_frame_time(args.f,verbose=True,rate=True)
    else:
        cam.set_frame_time(args.f,verbose=True)
else:
    if args.r:
        cam.set_frame_time(args.f,rate=True)
    else:
        cam.set_frame_time(args.f)


Exemple #16
0
#Option to set integration time w/ or w/out verbose
if args.i:
    if args.v:
        int_t = cam.set_int_time(args.i, verbose=True)
    else:
        int_t = cam.set_int_time(args.i)
else:
    if args.v:
        int_t = cam.read_int_time(verbose=True)
    else:
        int_t = cam.read_int_time()

#Option to set frame time w/ or w/out verbose
if args.t:
    if args.v:
        frame_t = cam.set_frame_time(args.t, verbose=True)
    else:
        frame_t = cam.set_frame_time(args.t)
else:
    if args.v:
        frame_t = cam.read_frame_time(verbose=True)
    else:
        frame_t = cam.read_frame_time()

#Capture image w/ or w/out defined location
if args.l:
    for i in range(args.l):
        if args.r:
            capture_resp, _ = capture(args.p, args.r, 'f')
            cam.file_sorting(args.r,
                             int_t,
Exemple #17
0
import scicam as cam
import argparse

parser = argparse.ArgumentParser(prog='capture Image', description='Captures image using specified routine')
parser.add_argument('-i', type=float, help='Integration Time')
parser.add_argument('-g', type=str, help='Naming Tag',default = '')
parser.add_argument('-l', type=int, help='Number of integrations (NDIT)')
args = parser.parse_args()

img_dir = '//merger.anu.edu.au/mbirch/images'
if args.i:
    int_t = cam.set_int_time(args.i)
    frame_t = cam.set_frame_time((args.i+20))
else:
    int_t = cam.read_int_time()
    frame_t = cam.read_frame_time()
if args.l:
    for i in range(args.l):
        cam.img_cap('capture',img_dir)
        cam.file_sorting(img_dir,int_t,frame_t,tag=args.g)
else:
    cam.img_cap('capture',img_dir)
    cam.file_sorting(img_dir,int_t,frame_t,tag=args.g)