## regrswh += ENET(descr="ENET()") # glmnet from R via RPy if externals.exists('glmnet'): from mvpa.clfs.glmnet import GLMNET_C, GLMNET_R clfswh += GLMNET_C(descr="GLMNET_C()") regrswh += GLMNET_R(descr="GLMNET_R()") # LDA/QDA clfswh += LDA(descr='LDA()') clfswh += QDA(descr='QDA()') if externals.exists('skl'): from scikits.learn.lda import LDA as sklLDA from mvpa.clfs.skl.base import SKLLearnerAdapter clfswh += SKLLearnerAdapter(sklLDA(), tags=['lda', 'linear', 'multiclass', 'binary'], descr='scikits.learn.LDA()_adapter') # kNN clfswh += kNN(k=5, descr="kNN(k=5)") clfswh += kNN(k=5, voting='majority', descr="kNN(k=5, voting='majority')") clfswh += \ FeatureSelectionClassifier( kNN(), SensitivityBasedFeatureSelection( SMLRWeights(SMLR(lm=1.0, implementation="C"), postproc=maxofabs_sample()), RangeElementSelector(mode='select')), descr="kNN on SMLR(lm=1) non-0")
## regrswh += ENET(descr="ENET()") # glmnet from R via RPy if externals.exists('glmnet'): from mvpa.clfs.glmnet import GLMNET_C, GLMNET_R clfswh += GLMNET_C(descr="GLMNET_C()") regrswh += GLMNET_R(descr="GLMNET_R()") # LDA/QDA clfswh += LDA(descr='LDA()') clfswh += QDA(descr='QDA()') if externals.exists('skl'): from scikits.learn.lda import LDA as sklLDA from mvpa.clfs.skl.base import SKLLearnerAdapter clfswh += SKLLearnerAdapter(sklLDA(), tags=['lda', 'linear', 'multiclass', 'binary'], descr='skl.LDA()') if externals.versions['skl'] >= '0.8': from scikits.learn.pls import PLSRegression as sklPLSRegression # somewhat silly use of PLS, but oh well regrswh += SKLLearnerAdapter(sklPLSRegression(n_components=1), tags=['linear', 'regression'], enforce_dim=1, descr='skl.PLSRegression_1d()') if externals.versions['skl'] >= '0.6.0': from scikits.learn.linear_model import \ LARS as sklLARS, LassoLARS as sklLassoLARS _lars_tags = ['lars', 'linear', 'regression', 'does_feature_selection']
# glmnet from R via RPy if externals.exists("glmnet"): from mvpa2.clfs.glmnet import GLMNET_C, GLMNET_R clfswh += GLMNET_C(descr="GLMNET_C()") regrswh += GLMNET_R(descr="GLMNET_R()") # LDA/QDA clfswh += LDA(descr="LDA()") clfswh += QDA(descr="QDA()") if externals.exists("skl"): from scikits.learn.lda import LDA as sklLDA from mvpa2.clfs.skl.base import SKLLearnerAdapter clfswh += SKLLearnerAdapter(sklLDA(), tags=["lda", "linear", "multiclass", "binary"], descr="skl.LDA()") if externals.versions["skl"] >= "0.8": from scikits.learn.pls import PLSRegression as sklPLSRegression # somewhat silly use of PLS, but oh well regrswh += SKLLearnerAdapter( sklPLSRegression(n_components=1), tags=["linear", "regression"], enforce_dim=1, descr="skl.PLSRegression_1d()", ) if externals.versions["skl"] >= "0.6.0": from scikits.learn.linear_model import LARS as sklLARS, LassoLARS as sklLassoLARS